- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- + 向量在几何中的应用
- 用向量证明线段垂直
- 用向量解决夹角问题
- 用向量解决线段的长度问题
- 向量与几何最值
- 向量在几何中的其他应用
- 向量在物理中的应用
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(2016·哈尔滨三模)已知O为正三角形ABC内一点,且满足
,若△OAB的面积与△OAC的面积比值为3,则λ的值为( )

A.![]() | B.1 |
C.2 | D.3 |
若
(
)是
所在的平面内的点,且
.

给出下列说法:
①
;
②
的最小值一定是
;
③点
、
在一条直线上;
④向量
及
在向量
的方向上的投影必相等.
其中正确的个数是( )





给出下列说法:
①

②


③点


④向量



其中正确的个数是( )
A.![]() | B.![]() | C.![]() | D.![]() |
已知
,点
,
(1)以
为对角线作正方形/
(点
依次逆时针排列),求出
的坐标,并求出点
的坐标;
(2)设
为与
垂直的单位向量,求向量
的坐标,并求边
上的高
的长.


(1)以





(2)设




