- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 平面向量的实际背景及基本概念
- 平面向量的线性运算
- 平面向量的基本定理及坐标表示
- 平面向量的数量积
- + 平面向量的应用举例
- 向量在几何中的应用
- 向量在物理中的应用
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
在
ABC,a,b,c分别是三个内角A,B,C的对边,设向量
=(b-c,a-c),
若
,则角A的大小是( )




A.90° | B.45° | C.60° | D.30° |
如图,已知边长为4的正方形ABCD,E是BC边上一动点(与B、C不重合),连结AE,作EF⊥AE交∠BCD的外角平分线于F.设
,记
,则函数
的值域是 ;当
面积最大时,
.






