- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 平面向量
- 平面向量的实际背景及基本概念
- 平面向量的线性运算
- 平面向量的基本定理及坐标表示
- 平面向量的数量积
- 平面向量的应用举例
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知点
为圆
上一点,
轴于点
,
轴于点
,点
满足
(
为坐标原点),点
的轨迹为曲线
.
(Ⅰ)求
的方程;
(Ⅱ)斜率为
的直线
交曲线
于不同的两点
、
,是否存在定点
,使得直线
、
的斜率之和恒为0.若存在,则求出点
的坐标;若不存在,则请说明理由.











(Ⅰ)求

(Ⅱ)斜率为









设点
,满足|PA|=2|PB|的点
的轨迹是圆M:x2+y2
x+Ey+F=0.直线AB与圆M相交于C,D两点,
,且点C的纵坐标为
.
(1)求a,b的值;
(2)已知直线l:x+y+2=0与圆M相交于G,H两点,求|GH|.





(1)求a,b的值;
(2)已知直线l:x+y+2=0与圆M相交于G,H两点,求|GH|.
已知抛物线
,
,
,其中
,过
的直线
交抛物线
与
,
.

(I)当
,且直线
垂直于
轴时,求证:
为直角三角形;
(Ⅱ)若
,当点
在直线
上时,是否存在实数
,使得
,若存在,求出
的值;若不存在,请说明理由.










(I)当




(Ⅱ)若






已知
是圆
:
上的动点,设
在
轴上的射影为
,动点
满足
,
的轨迹为
.
(1)求
的方程;
(2)圆
及曲线
与
轴的四个交点,自上而下记为
,
,
,
,直线
,
与
轴分别交于
,
(
为相异两点),直线
与
的另一个交点为
,求证:
,
,
三点共线.










(1)求

(2)圆



















已知圆M:x2+(y﹣1)2=1,圆N:x2+(y+1)2=1,直线l1、l2分别过圆心M、N,且l1与圆M相交于A、B,l2与圆N相交于C、D,P是椭圆
上的任意一动点,则
的最小值为( )


A.![]() | B.![]() | C.3 | D.6 |