某小区打造休闲场地,将一块直角三角形空地ABC用一条长为16m的道路MN分成两部分(点M在边AB上).分别种植花卉和铺设草坪,其中花卉面积为,草坪面积为,且,已知,求的最大值(本题中道路都指线段).
当前题号:1 | 题型:解答题 | 难度:0.99
如图所示,是两个垃圾中转站,的正东方向千米处,的南面为居民生活区.为了妥善处理生活垃圾,政府决定在的北面建一个垃圾发电厂.垃圾发电厂的选址拟满足以下两个要求(可看成三个点):①垃圾发电厂到两个垃圾中转站的距离与它们每天集中的生活垃圾量成反比,比例系数相同;②垃圾发电厂应尽量远离居民区(这里参考的指标是点到直线的距离要尽可能大).现估测得两个中转站每天集中的生活垃圾量分别约为吨和吨.设

(1)求(用的表达式表示);
(2)垃圾发电厂该如何选址才能同时满足上述要求?
当前题号:2 | 题型:解答题 | 难度:0.99
分别表示的三个内角所对边的边长,表示的外接圆半径.
(1),求的长;
(2)在中,若是钝角,求证:
(3)给定三个正实数,其中,问满足怎样的关系时,以为边长,为外接圆半径的不存在,存在一个或存在两个(全等的三角形算作同一个)?在存在的情况下,用表示.
当前题号:3 | 题型:解答题 | 难度:0.99
如图,某公园内有两条道路,现计划在上选择一点,新建道路,并把所在的区域改造成绿化区域.已知
(1)若绿化区域的面积为,求道路的长度;
(2)若绿化区域改造成本为10万元,新建道路成本为10万元.设,当为何值时,该计划所需总费用最小?
当前题号:4 | 题型:解答题 | 难度:0.99