- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 距离测量问题
- 高度测量问题
- 角度测量问题
- + 正、余弦定理的其他应用
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某小区打造休闲场地,将一块直角三角形空地ABC用一条长为16m的道路MN分成两部分(点M在边AB上).分别种植花卉和铺设草坪,其中花卉面积为
,草坪面积为
,且
,已知
,求
的最大值(本题中道路都指线段).





如图所示,
、
是两个垃圾中转站,
在
的正东方向
千米处,
的南面为居民生活区.为了妥善处理生活垃圾,政府决定在
的北面建一个垃圾发电厂
.垃圾发电厂
的选址拟满足以下两个要求(
、
、
可看成三个点):①垃圾发电厂到两个垃圾中转站的距离与它们每天集中的生活垃圾量成反比,比例系数相同;②垃圾发电厂应尽量远离居民区(这里参考的指标是点
到直线
的距离要尽可能大).现估测得
、
两个中转站每天集中的生活垃圾量分别约为
吨和
吨.设
.

(1)求
(用
的表达式表示);
(2)垃圾发电厂该如何选址才能同时满足上述要求?




















(1)求


(2)垃圾发电厂该如何选址才能同时满足上述要求?
用
分别表示
的三个内角
所对边的边长,
表示
的外接圆半径.
(1)
,求
的长;
(2)在
中,若
是钝角,求证:
;
(3)给定三个正实数
,其中
,问
满足怎样的关系时,以
为边长,
为外接圆半径的
不存在,存在一个或存在两个(全等的三角形算作同一个)?在
存在的情况下,用
表示
.





(1)


(2)在



(3)给定三个正实数









如图,某公园内有两条道路
,
,现计划在
上选择一点
,新建道路
,并把
所在的区域改造成绿化区域.已知
,
.
(1)若绿化区域
的面积为
,求道路
的长度;
(2)若绿化区域
改造成本为10万元
,新建道路
成本为10万元
.设
,当
为何值时,该计划所需总费用最小?








(1)若绿化区域



(2)若绿化区域






