刷题首页
题库
高中数学
题干
如图,某公园内有两条道路
,
,现计划在
上选择一点
,新建道路
,并把
所在的区域改造成绿化区域.已知
,
.
(1)若绿化区域
的面积为
,求道路
的长度;
(2)若绿化区域
改造成本为10万元
,新建道路
成本为10万元
.设
,当
为何值时,该计划所需总费用最小?
上一题
下一题
0.99难度 解答题 更新时间:2020-01-24 06:38:29
答案(点此获取答案解析)
同类题1
某企业拟生产一种如图所示的圆柱形易拉罐(上下底面及侧面的厚度不计).易拉罐的体积为
,设圆柱的高度为
,底面半径为
,且
.假设该易拉罐的制造费用仅与其表面积有关.已知易拉罐侧面制造费用为
元/
,易拉罐上下底面的制造费用均为
元/
(
,
为常数,且
).
(1)写出易拉罐的制造费用
(元)关于
的函数表达式,并求其定义域;
(2)求易拉罐制造费用最低时
的值.
同类题2
海轮每小时使用的燃料费与它的航行速度的立方成正比,已知某海轮的最大航速为
海里/小时,当速度为
海里/小时时,它的燃料费是每小时
元,其余费用(无论速度如何)都是每小时
元
.
如果甲乙两地相距
海里,则要使该海轮从甲地航行到乙地的总费用最低,它的航速应为( )
A.
海里/小时
B.
海里/小时
C.
海里/小时
D.
海里/小时
同类题3
如图,某大型水上乐园内有一块矩形场地
米,
米,以
为直径的半圆
和半圆
(半圆在矩形
内部)为两个半圆形水上主题乐园,
都建有围墙,游客只能从线段
处进出该主题乐园.为了进一步提高经济效益,水上乐园管理部门决定沿着
修建不锈钢护栏,沿着线段
修建该主题乐园大门并设置检票口,其中
分别为
上的动点,
,且线段
与线段
在圆心
和
连线的同侧.已知弧线部分的修建费用为
元/米,直线部门的平均修建费用为
元/米.
(1)若
米,则检票等候区域(其中阴影部分)面积为多少平方米?
(2)试确定点
的位置,使得修建费用最低.
同类题4
如图,
是南北方向的一条公路,
是北偏东
方向的一条公路,某风景区的一段边界为曲线
.为方便游客光,拟过曲线
上的某点分别修建与公路
,
垂直的两条道路
,
,且
,
的造价分别为5万元
百米,40万元
百米,建立如图所示的直角坐标系
,则曲线符合函数
模型,设
,修建两条道路
,
的总造价为
万元,题中所涉及的长度单位均为百米.
(1)求
解析式;
(2)当
为多少时,总造价
最低?并求出最低造价.
同类题5
某工厂要建造一个长方体的无盖箱子,其容积为48 m
3
,高为3 m,如果箱底每平方米的造价为15元,箱侧面每平方米的造价为12元,则箱子的最低总造价为( )
A.900元
B.840元
C.818元
D.816元
相关知识点
函数与导数
导数及其应用
导数的综合应用
利用导数解决实际应用问题
成本最小问题
三角函数在生活中的应用