刷题首页
题库
高中数学
题干
如图,某公园内有两条道路
,
,现计划在
上选择一点
,新建道路
,并把
所在的区域改造成绿化区域.已知
,
.
(1)若绿化区域
的面积为
,求道路
的长度;
(2)若绿化区域
改造成本为10万元
,新建道路
成本为10万元
.设
,当
为何值时,该计划所需总费用最小?
上一题
下一题
0.99难度 解答题 更新时间:2020-01-24 06:38:29
答案(点此获取答案解析)
同类题1
如图所示,一座小岛距离海岸线上最近的点
的距离是
,从点
沿海岸正东
处有一个城镇.假设一个人驾驶的小船的平均速度为
,步行的速度是
,用
(单位:
)表示他从小岛到城镇的时间,
(单位:
)表示此人将船停在海岸处距
点的距离.经过计算将船停在海岸处某地,可使从小岛到城镇所花时间最短,则这个最短时间是
__________
.
同类题2
为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用
C
(单位:万元)与隔热层厚度
x
(单位:cm)满足关系
C
(
x
)=
(0≤
x
≤10),若不建隔热层,每年能源消耗费用为8万元,设
f
(
x
)为隔热层建造费用与20年的能源消耗费用之和.
(1)求
k
的值及
f
(
x
)的表达式;
(2)隔热层修建多厚时,总费用
f
(
x
)达到最小,并求最小值.
同类题3
某公园为了美化环境和方便顾客,计划建造一座圆弧形拱桥,已知该桥的剖面如图所示,共包括圆弧形桥面
和两条长度相等的直线型路面
、
,桥面跨度
的长不超过
米,拱桥
所在圆的半径为
米,圆心
在水面
上,且
和
所在直线与圆
分别在连结点
和
处相切.设
,已知直线型桥面每米修建费用是
元,弧形桥面每米修建费用是
元.
(1)若桥面(线段
、
和弧
)的修建总费用为
元,求
关于
的函数关系式;
(2)当
为何值时,桥面修建总费用
最低?
同类题4
某产品包装公司要生产一种容积为
的圆柱形饮料罐(上下都有底),一个单位面积的罐底造价是一个单位面积罐身造价的3倍,若不考虑饮料罐的厚度,欲使这种饮料罐的造价最低,则这种饮料罐的底面半径是
___________
.
同类题5
某市有一特色酒店由一些完全相同的帐篷构成.每座帐篷的体积为
立方米,且分上下两层,其中上层是半径为
(单位:米)的半球体,下层是半径为
米,高为
米的圆柱体(如图).经测算,上层半球体部分每平方米建造费用为2千元,下方圆柱体的侧面、隔层和地面三个部分平均每平方米建造费用为3千元,设每座帐篷的建造费用为
千元.
参考公式:球的体积
,球的表面积
,其中
为球的半径.
(1)求
关于
的函数解析式,并指出该函数的定义域;
(2)当半径
为何值时,每座帐篷的建造费用最小,并求出最小值.
相关知识点
函数与导数
导数及其应用
导数的综合应用
利用导数解决实际应用问题
成本最小问题
三角函数在生活中的应用