- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 正弦函数的图象
- 余弦函数的图象
- 正弦函数的单调性
- 正弦函数的定义域、值域和最值
- 正弦函数的奇偶性
- 正弦函数的周期性
- 正弦函数的对称性
- 余弦函数的单调性
- 余弦函数的定义域、值域和最值
- 余弦函数的奇偶性
- 余弦函数的周期性
- 余弦函数的对称性
- 正切函数的图象
- 正切函数的单调性
- 正切函数的奇偶性
- 正切函数的周期性
- 正切函数的对称性
- 正切函数的定义域、值域和最值
- 正(余)弦型三角函数的图象
- 正切型三角函数的图象
- + 三角函数图象的综合应用
- 识别三角函数的图象(含正、余弦,正切)
- 三角函数图象的综合应用
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
若f(x)=sin(2ωx–
)的图象关于直线x=
对称,其中ω∈(
).
(1)求f(x)的解析式;
(2)已知x∈[
],求f(x)的增区间;
(3)将y=f(x)的图象向右平移
个单位,再将得到的图象的纵坐标变为原来的2倍(横坐标不变)后得到的y=g(x)的图象.讨论
,
]的交点个数.



(1)求f(x)的解析式;
(2)已知x∈[

(3)将y=f(x)的图象向右平移


