- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 正弦函数的图象
- 余弦函数的图象
- 正弦函数的单调性
- + 正弦函数的定义域、值域和最值
- 求含sinx型函数的定义域
- 求含sinx型函数的值域和最值
- 由正弦(型)函数的值域(最值)求参数
- 正弦函数的奇偶性
- 正弦函数的周期性
- 正弦函数的对称性
- 余弦函数的单调性
- 余弦函数的定义域、值域和最值
- 余弦函数的奇偶性
- 余弦函数的周期性
- 余弦函数的对称性
- 正切函数的图象
- 正切函数的单调性
- 正切函数的奇偶性
- 正切函数的周期性
- 正切函数的对称性
- 正切函数的定义域、值域和最值
- 正(余)弦型三角函数的图象
- 正切型三角函数的图象
- 三角函数图象的综合应用
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
如图,某市拟在道路的一侧修建一条运动赛道,赛道的前一部分为曲线段ABC,该曲线段为函数y=









(1)求


(2)若要在圆弧赛道所对应的扇形区域内建一个“矩形草坪”,如图所示,矩形的一边在道路AE上,一个顶点在扇形半径OD上.记∠POE=


设
定义一种向量积:
.已知
,
,点
在
的图象上运动,点Q在
的图象上运动,且满足
(其中O为坐标原点),则
的最大值A及最小正周期T分别为( )









A.2,π | B.2,4π | C.![]() | D.![]() |
已知向量
,
,(其中
),函数
,若
相邻两对称轴间的距离为
.
(1)求
的值,并求
的最大值及相应
的集合;
(2)在
中,
分别是
所对的边,
的面积
,
,
,求边
的长.






(1)求



(2)在








把函数
的图像上每一点的横坐标伸长到原来的2倍,纵坐标不变,然后再向左平移
个单位后得到一个最小正周期为2
的奇函数
.
(Ⅰ) 求
的值;
(Ⅱ)求函数
的最大值与最小值.




(Ⅰ) 求

(Ⅱ)求函数
