- 集合与常用逻辑用语
- 函数与导数
- 三角函数与解三角形
- 利用定义求某角的三角函数值
- 由终边或终边上的点求三角函数值
- 由三角函数值求终边上的点或参数
- 由单位圆求三角函数值
- + 三角函数定义的其他应用
- 单位圆与周期性
- 单位圆与正弦函数、余弦函数的基本性质
- 三角函数的定义域
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
(1)写出下列两组诱导公式:
①关于
与
的诱导公式;
②关于
与
的诱导公式.
(2)从上述①②两组诱导公式中任选一组,用任意角的三角函数定义给出证明.
①关于


②关于


(2)从上述①②两组诱导公式中任选一组,用任意角的三角函数定义给出证明.
我国古代数学家僧一行应用“九服晷(guǐ)影算法”在《大衍历》中建立了晷影长
与太阳天顶距
的对应数表,这是世界数学史上较早的一张正切函数表.根据三角学知识可知,晷影长度
等于表高
与太阳天顶距
正切值的乘积,即
.已知天顶距
时,晷影长
.现测得午中晷影长度
,则天顶距
为( )
(参考数据:
,
,
,
)










(参考数据:




A.![]() | B.![]() | C.![]() | D.![]() |
筒车是我国古代发明的一种水利灌溉工具,明朝科学家徐光启在《农政全书》中用图画描绘了筒车的工作原理(如图1).因其经济又环保,至今还在农业生产中得到使用(如图2).假定在水流量稳定的情况下,筒车上的每一个盛水筒都做匀速圆周运动.因筒车上盛水筒的运动具有周期性,可以考虑利用三角函数模型刻画盛水筒(视为质点)的运动规律.将筒车抽象为一个几何图形,建立直角坐标系(如图3).设经过t秒后,筒车上的某个盛水筒
从点P0运动到点P.由筒车的工作原理可知,这个盛水筒距离水面的高度H(单位:
),由以下量所决定:筒车转轮的中心O到水面的距离h,筒车的半径r,筒车转动的角速度ω(单位:
),盛水筒的初始位置P0以及所经过的时间t(单位:
).已知r=3
,h=2
,筒车每分钟转动(按逆时针方向)1.5圈,点P0距离水面的高度为3.5
,若盛水筒M从点P0开始计算时间,则至少需要经过_______
就可到达最高点;若将点
距离水面的高度
表示为时间
的函数,则此函数表达式为_________.

图1 图2 图3














图1 图2 图3