- 集合与常用逻辑用语
- 函数与导数
- 用导数判断或证明已知函数的单调性
- 利用导数求函数的单调区间
- 由函数的单调区间求参数
- + 由函数在区间上的单调性求参数
- 函数与导函数图象之间的关系
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设
是定义在
上的偶函数,
的图象与
的图象关于直线
对称,且当
时,
.
(
)求
的解析式.
(
)若
在
上为增函数,求
的取值范围.
(
)是否存在正整数
,使
的图象的最高点落在直线
上?若存在,求出
的值;若不存在,请说明理由.







(


(




(





已知
.
(1)若函数
为奇函数,求实数
的值;
(2)若函数
在区间[﹣1,1]上是增函数,求实数
的值组成的集合A;
(3)设关于
的方程
的两个非零实根为
,试问:是否存在实数
,使得不等式
对任意
及
恒成立?若存在,求
的取值范围;若不存在,请说明理由.

(1)若函数


(2)若函数


(3)设关于








设f(x)是定义在区间(-1,1)上的奇函数,它在区间[0,1)上单调递减,且f(1-a)+f(1-a2)<0,则实数a的取值范围是________.