- 集合与常用逻辑用语
- 函数与导数
- 用导数判断或证明已知函数的单调性
- 利用导数求函数的单调区间
- 由函数的单调区间求参数
- + 由函数在区间上的单调性求参数
- 函数与导函数图象之间的关系
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
,其中
,
为参数,且
.
(Ⅰ)当
时,判断函数
是否有极值.
(Ⅱ)要使函数
的极小值大于零,求参数
的取值范围.
(Ⅲ)若对(Ⅱ)中所求的取值范围内的任意参数
,函数
在区间
内都是增函数,求实数
的取值范围.




(Ⅰ)当


(Ⅱ)要使函数


(Ⅲ)若对(Ⅱ)中所求的取值范围内的任意参数




已知函数
(其中
,
).
(1)当
时,求函数
在
点处的切线方程;
(2)若函数
在区间
上为增函数,求实数
的取值范围;
(3)求证:对于任意大于
的正整数
,都有
.



(1)当



(2)若函数



(3)求证:对于任意大于


