- 集合与常用逻辑用语
- 函数与导数
- 导数的概念和几何意义
- 导数的计算
- + 导数在研究函数中的作用
- 利用导数研究函数的单调性
- 利用导数研究函数的极值
- 利用导数研究函数的最值
- 导数的综合应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知f(x)=ex-alnx-a,其中常数a>0.
(1) 当a=e时,求函数f(x)的极值;
(2) 若函数y=f(x)有两个零点x1、x2(0<x1<x2),求证:
<x1<1<x2<a;
(3) 求证:e2x-2-ex-1lnx-x≥0.
(1) 当a=e时,求函数f(x)的极值;
(2) 若函数y=f(x)有两个零点x1、x2(0<x1<x2),求证:

(3) 求证:e2x-2-ex-1lnx-x≥0.
在区间
上,函数f(x)=x2+px+q与g(x)=2x+
在同一点取得相同的最小值,那么f(x)在
上的最大值是( )



A.![]() | B.![]() |
C.8 | D.4 |
已知a,b为正实数,函数f(x)=ax3+bx+2x在[0,1]上的最大值为4,则f(x)在[-1,0]上的最小值为( )
A.-![]() | B.![]() |
C.-2 | D.2 |