- 集合与常用逻辑用语
- 函数与导数
- 平均变化率
- + 导数的几何意义
- 求曲线切线的斜率(倾斜角)
- 求在曲线上一点处的切线方程
- 求过一点的切线方程
- 已知切线(斜率)求参数
- 两条切线平行、垂直、重合(公切线)问题
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
,
.
(1)当
时,求函数
的单调区间;
(2)设函数
在
处的切线方程为
,若函数
是
上的单调增函数,求
的值;
(3)是否存在一条直线与函数
的图象相切于两个不同的点?并说明理由.


(1)当


(2)设函数






(3)是否存在一条直线与函数

已知函数
.
(1)若曲线
在
处的切线的斜率为3,求实数
的值;
(2)若函数在区间
上存在极小值,求实数
的取值范围;
(3)如果
的解集中只有一个整数,求实数
的取值范围.

(1)若曲线



(2)若函数在区间


(3)如果


对于函数y=ex,曲线y=ex在与坐标轴交点处的切线方程为y=x+1,由于曲线 y=ex在切线y=x+1的上方,故有不等式ex≥x+1.类比上述推理:对于函数y=lnx(x>0),有不等式( )
A.lnx≥x+1(x>0) | B.lnx≤1﹣x(x>0) |
C.lnx≥x﹣1(x>0) | D.lnx≤x﹣1(x>0) |