- 集合与常用逻辑用语
- 函数与导数
- + 导数的概念和几何意义
- 平均变化率
- 导数的几何意义
- 导数的计算
- 导数在研究函数中的作用
- 导数的综合应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数f(x)=xlnx,g(x)=﹣x2+ax﹣2.
(1)若曲线f(x)=xlnx在x=1处的切线与函数g(x)=﹣x2+ax﹣2也相切,求实数a的值;
(2)求函数f(x)在
上的最小值;
(3)证明:对任意的x∈(0,+∞),都有
成立
(1)若曲线f(x)=xlnx在x=1处的切线与函数g(x)=﹣x2+ax﹣2也相切,求实数a的值;
(2)求函数f(x)在

(3)证明:对任意的x∈(0,+∞),都有

已知曲线 y = x3 + x-2 在点 P0 处的切线
平行于直线
4x-y-1=0,且点 P0 在第三象限,
⑴求P0的坐标;
⑵若直线
, 且 l 也过切点P0 ,求直线l的方程.

4x-y-1=0,且点 P0 在第三象限,
⑴求P0的坐标;
⑵若直线

已知函数
(
为常数,
是自然对数的底数),曲线
在点
处的切线方程是
.
(1)求
的值;(2)求
的单调区间;
(3)设
(其中
为
的导函数)。证明:对任意
, 






(1)求


(3)设





以下关于导数和极值点的说法中正确的是( )
A.可导函数![]() ![]() |
B.若![]() ![]() ![]() ![]() |
C.![]() ![]() ![]() ![]() ![]() ![]() ![]() |
D.若奇函数![]() ![]() |