- 集合与常用逻辑用语
- 函数与导数
- + 导数的概念和几何意义
- 平均变化率
- 导数的几何意义
- 导数的计算
- 导数在研究函数中的作用
- 导数的综合应用
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
的图像过坐标原点O,且在点
处的切线的斜率是-5.
(1)求实数b、c的值;
(2)求f(x)在区间[-1,2]上的最大值;
(3)对任意给定的正实数a,曲线y=f(x)上是否存在两点P、Q,使得△POQ是以O为直角顶点的直角三角形,且此三角形斜边中点在y轴上?请说明理由.


(1)求实数b、c的值;
(2)求f(x)在区间[-1,2]上的最大值;
(3)对任意给定的正实数a,曲线y=f(x)上是否存在两点P、Q,使得△POQ是以O为直角顶点的直角三角形,且此三角形斜边中点在y轴上?请说明理由.
已知函数
,
,
,
.
(1)求函数
在点
处的切线方程;
(2)若
在区间
上恒成立,求
的取值范围;
(3)当
时,求证:在区间
上,满足
恒成立的函数
有无穷多个.




(1)求函数


(2)若



(3)当




已知函数f(x)=ax+lnx,x∈(l,e).
(Ⅰ)若函数f(x)的图象在x=2处的切线的斜率为1,求实数a的值;
(Ⅱ)若f(x)有极值,求实数a的取值范围和函数f(x)的值域;
(Ⅲ)在(Ⅱ)的条件下,函数g(x)=x3﹣x﹣2,证明:∀x1∈(l,e),∃x0∈(l,e),使得g(x0)=f(x1)成立.
(Ⅰ)若函数f(x)的图象在x=2处的切线的斜率为1,求实数a的值;
(Ⅱ)若f(x)有极值,求实数a的取值范围和函数f(x)的值域;
(Ⅲ)在(Ⅱ)的条件下,函数g(x)=x3﹣x﹣2,证明:∀x1∈(l,e),∃x0∈(l,e),使得g(x0)=f(x1)成立.