- 集合与常用逻辑用语
- 函数与导数
- 函数与方程
- + 函数模型及其应用
- 几类不同增长的函数模型
- 常见的函数模型(1)——二次、分段函数
- 常见的函数模型(2)——指数、对数、幂函数
- 函数模型的应用实例
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
通过研究学生的学习行为,专家发现,学生的注意力随老师讲课时间的变化而变化,讲课开始时,学生的兴趣激增;中间有一段时间,学生的兴趣保持较理想的状态,随后学生的注意力开始分散,设
表示学生的注意力随时间
(分钟)的变化规律(注:
越大,表明学生的注意力越集中),经过实验分析得知:
.
(1).讲课开始后多少分钟,学生的注意力最集中?能持续多少分钟?
(2).讲课开始后5分钟与讲课开始后25分钟比较,何时学生的注意力更集中?
(3).一道数学难题需要讲解24分钟,并且要求学生的注意力至少达到180,那么经过适当安排,老师能否在学生达到所需的状态下讲授完这道题目?




(1).讲课开始后多少分钟,学生的注意力最集中?能持续多少分钟?
(2).讲课开始后5分钟与讲课开始后25分钟比较,何时学生的注意力更集中?
(3).一道数学难题需要讲解24分钟,并且要求学生的注意力至少达到180,那么经过适当安排,老师能否在学生达到所需的状态下讲授完这道题目?
若定义在区间
上的函数
满足:对于任意的
,都有
,且
时,有
,
的最大值、最小值分别为
,则
的值为( )









A.2012 | B.2013 | C.4024 | D.4026 |
函数
的定义域为D,若对于任意
,当
时都有
,则称函数
在D上为非减函数,设函数
在[0,1]上为非减函数,且满足以下三个条件:①
;②
;③
,则
等于()










A.![]() | B.![]() | C.1 | D.![]() |
某汽车厂有一条价值为
万元的汽车生产线,现要通过技术改造来提高该生产线的生产能力,提高产品的增加值,经过市场调查,产品的增加值
万元与技术改造投入
万元之间满足:①
与
成正比;②当
时,
,并且技术改造投入满足
,其中
为常数且
.
(1)求
表达式及定义域;
(2)求出产品增加值的最大值及相应
的值.










(1)求

(2)求出产品增加值的最大值及相应
