- 集合与常用逻辑用语
- 函数与导数
- 函数与方程
- + 函数模型及其应用
- 几类不同增长的函数模型
- 常见的函数模型(1)——二次、分段函数
- 常见的函数模型(2)——指数、对数、幂函数
- 函数模型的应用实例
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某企业为打入国际市场,决定从
,
两种产品中只选择一种进行投资生产.已知投资生产这两种产品的有关数据如下表:(单位:万美元)
其中年固定成本与年生产的件数无关,
为待定常数,其值由生产
产品的原材料价格决定,预计
.另外,年销售
件
产品时需上交
万美元的特别关税.假设生产出来的产品都能在当年销售出去.
(1)写出该厂分别投资生产
,
两种产品的年利润
、
与生产相应产品的件数
之间的函数关系,并指明其定义域;
(2)如何投资才可获得最大年利润?请你做出规划.


项目类别 | 年固定成本 | 每件产品成本 | 每件产品销售价 | 每年最多可生产的件数 |
![]() | 20 | ![]() | 10 | 200 |
![]() | 40 | 8 | 18 | 120 |
其中年固定成本与年生产的件数无关,






(1)写出该厂分别投资生产





(2)如何投资才可获得最大年利润?请你做出规划.
某心理学研究小组在对学生上课注意力集中情况的调查研究中,发现其注意力指数p与听课时间t之间的关系满足如图所示的曲线.当t∈(0,14]时,曲线是二次函数图象的一部分,当t∈[14,40]时,曲线是函数
(
且
)图象的一部分.根据专家研究,当注意力指数p大于等于80时听课效果最佳.

(1)试求
的函数关系式;
(2)一道数学难题,讲解需要22分钟,问老师能否经过合理安排在学生听课效果最佳时讲完?请说明理由.




(1)试求

(2)一道数学难题,讲解需要22分钟,问老师能否经过合理安排在学生听课效果最佳时讲完?请说明理由.
华东师大二附中乐东黄流中学位于我国南海边,有一片美丽的沙滩和一弯天然的海滨浴场.如图,海岸线MAN,
,
(海岸线MAN上方是大海),现用长为BC的栏网围成一个三角形学生游泳场所,其中
.

(1)若
,求三角形游泳场所面积最大值;
(2)若BC=600,
,由于学生人数的增加需要扩大游泳场所面积,现在折线MBCN上方选点D,现用长为BD,DC的栏围成一个四边形游泳场所DBAC,使
,求四边形游泳场所DBAC的最大面积.




(1)若

(2)若BC=600,


某商品每千克定价10元,商家采取了如下的促销方式:
(1)求一次购买
(单位:千克),此商品的花费
(单位:元)的函数解析式;
(2)某人一次购买此商品400元,问他能购得此商品多少千克?
一次购买量 | 促销方式 |
不多于20千克 | 原价出售 |
多于20千克且不多于40千克 | 不多于20千克部分,原价出售 多于20千克部分,九折出售 |
多于40千克 | 不多于20千克部分,原价出售 多于20千克且不多于40千克部分,九折出售 多于40千克部分八折出售 |
(1)求一次购买


(2)某人一次购买此商品400元,问他能购得此商品多少千克?
某同学大学毕业后,决定利用所学专业进行自主创业,经过市场调查,生产一小型电子产品需投入固定成本2万元,每生产x万件,需另投入流动成本C(x)万元,当年产量小于7万件时,C(x)=
x2+2x(万元);当年产量不小于7万件时,C(x)=6x+1nx+
﹣17(万元).已知每件产品售价为6元,假若该同学生产的产M当年全部售完.
(1)写出年利润P(x)(万元)关于年产量x(万件)的函数解析式;(注:年利润=年销售收人﹣固定成本﹣流动成本
(2)当年产量约为多少万件时,该同学的这一产品所获年利润最大?最大年利润是多少?(取e3≈20)


(1)写出年利润P(x)(万元)关于年产量x(万件)的函数解析式;(注:年利润=年销售收人﹣固定成本﹣流动成本
(2)当年产量约为多少万件时,该同学的这一产品所获年利润最大?最大年利润是多少?(取e3≈20)
近年来,我国多地区遭遇了雾霾天气,引起口罩热销.某品牌口罩原来每只成本为6元.售价为8元,月销售5万只.
(1)据市场调查,若售价每提高0.5元,月销售量将相应减少0.2万只,要使月总利润不低于原来的月总利润(月总利润
月销售总收入
月总成本),该口罩每只售价最多为多少元?
(2)为提高月总利润,厂家决定下月进行营销策略改革,计划每只售价
元,并投入
万元作为营销策略改革费用.据市场调查,每只售价每提高0.5元,月销售量将相应减少
万只.则当每只售价
为多少时,下月的月总利润最大?并求出下月最大总利润.
(1)据市场调查,若售价每提高0.5元,月销售量将相应减少0.2万只,要使月总利润不低于原来的月总利润(月总利润


(2)为提高月总利润,厂家决定下月进行营销策略改革,计划每只售价




某经销商计划销售一款新型的空气净化器,经市场调研发现以下规律:当每台净化器的利润为x(单位:元,x>0)时,销售量q(x)(单位:百台)与x的关系满足:若x不超过20,则q(x)=
;若x大于或等于180,则销售量为零;当20≤x≤180时,q(x)=a-b
(a,b为实常数).
(1)求函数q(x)的表达式;
(2)当x为多少时,总利润(单位:元)取得最大值,并求出该最大值.


(1)求函数q(x)的表达式;
(2)当x为多少时,总利润(单位:元)取得最大值,并求出该最大值.
图①是一栋新农村别墅,它由上部屋顶和下部主体两部分组成.如图②,屋顶由四坡屋面构成,其中前后两坡屋面ABFE和CDEF是全等的等腰梯形,左右两坡屋面EAD和FBC是全等的三角形.点F在平面ABCD和BC上的射影分别为H,M.已知HM = 5 m,BC = 10 m,梯形ABFE的面积是△FBC面积的2.2倍.设∠FMH =
.
(1)求屋顶面积S关于
的函数关系式;
(2)已知上部屋顶造价与屋顶面积成正比,比例系数为k(k为正的常数),下部主体造价与其 高度成正比,比例系数为16 k.现欲造一栋上、下总高度为6 m的别墅,试问:当
为何值时,总造价最低? 


(1)求屋顶面积S关于

(2)已知上部屋顶造价与屋顶面积成正比,比例系数为k(k为正的常数),下部主体造价与其 高度成正比,比例系数为16 k.现欲造一栋上、下总高度为6 m的别墅,试问:当


如图,已知
,
两镇分别位于东西湖岸
的
处和湖中小岛的
处,点
在
的正西方向
处,
,
,现计划铺设一条电缆联通
,
两镇,有两种铺设方案:①沿线段
在水下铺设;②在湖岸
上选一点
,先沿线段
在地下铺设,再沿线段
在水下铺设,预算地下、水下的电缆铺设费用分别为2万元
、4万元
.
(1)求
,
两镇间的距离;
(2)应该如何铺设,使总铺设费用最低?



















(1)求


(2)应该如何铺设,使总铺设费用最低?

如图1所示,某地打算在一块长方形地块上修建一个植物园(ABCDEF围成的封闭区域),其中AB长12百米,BC长4百米,
百米,AF长0.5百米,DEF是一段曲线形公路.该植物园的核心区为等腰直角三角形MPQ所示区域,且
,植物园大门位于公路DEF上的M处,音乐广场P位于AB的中点处,为了能够让游客更好地观赏园中的景观,现决定修建一条观光栈道,起点位于距离音乐广场P处2百米的O点所示位置,终点位于美食广场Q处.如图2所示,建立平面直角坐标系,若
满足
.

(1)求
的解析式;
(2)求观光栈道OQ的长度的最小值.





(1)求

(2)求观光栈道OQ的长度的最小值.