- 集合与常用逻辑用语
- 函数与导数
- 函数与方程
- + 函数模型及其应用
- 几类不同增长的函数模型
- 常见的函数模型(1)——二次、分段函数
- 常见的函数模型(2)——指数、对数、幂函数
- 函数模型的应用实例
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某高校为提升科研能力,计划逐年加大科研经费投入.若该高校2017年全年投入科研经费1300万元,在此基础上,每年投入的科研经费比上一年增长
,则该高校全年投入的科研经费开始超过2000万元的年份是( )(参考数据:
,
)




A.2020年 | B.2021年 | C.2022年 | D.2023年 |
某市统一规定,的士在城区内运营:(1)1公理以内(含1公里)票价5元;(2)1公里以上,每增加1公里(不足1公里的按1公里计算)票价增加2元的标准收费,某人乘坐市内的士6.5公里应付车费( )
A.14元 | B.15元 | C.16元 | D.17元 |
一辆汽车紧急刹车后滑行的距离
(单位:
)与刹车时的速度
(单位:
)的平方成正比,比例系数为
,而某种型号的汽车在速度为
时,紧急刹车后滑行的距离为
,在限速为
的高速公路上,一辆这种型号的车紧急刹车后滑行的距离为
,问:这辆车是否超速?









某市郊区有一加油站,2018年初汽油的存储量为50吨,计划从年初起每周初均购进汽油
吨,以满足城区内和城外汽车用油需求,已知城外汽车用油每周5吨;城区内汽车用油前
个周需求量
吨与
的函数关系式为
,
为常数,且前4个周城区内汽车的汽油需求量为100吨.
(1)试写出第
个周结束时,汽油存储量
(吨)与
的函数关系式;
(2)要使16个周内每周按计划购进汽油之后,加油站总能满足城区内和城外的需求,且每周结束时加油站的汽油存储量不超过150吨,试确定
的取值范围.







(1)试写出第



(2)要使16个周内每周按计划购进汽油之后,加油站总能满足城区内和城外的需求,且每周结束时加油站的汽油存储量不超过150吨,试确定

有一边长为
的正方形铁片,铁片的四角截去四个边长为
的小正方形,然后做成一个无盖方盒.

(1)试把方盒的容积
表示成
的函数;
(2)求
多大时,做成方盒的容积
最大.



(1)试把方盒的容积


(2)求


近年来,“共享单车”的出现为市民“绿色出行”提供了极大的方便,某共享单车公司计划在甲、乙两座城市共投资240万元,根据行业规定,每个城市至少要投资80万元,由前期市场调研可知:甲城市收益
与投入
(单位:万元)满足
,乙城市收益
与投入
(单位:万元)满足
,设甲城市的投入为
(单位:万元),两个城市的总收益为
(单位:万元).
(1)当投资甲城市128万元时,求此时公司总收益;
⑵试问如何安排甲、乙两个城市的投资,才能使公司总收益最大?








(1)当投资甲城市128万元时,求此时公司总收益;
⑵试问如何安排甲、乙两个城市的投资,才能使公司总收益最大?
某工厂某种产品的年固定成本为250万元,每生产
件,需另投入成本
,当年产量不足80件时,
(万元),当年产量不少于80件时
(万元),每件商品售价50万元,通过市场分析,该厂生产的商品能全部售完.
(1)写出年利润
(万元)关于年产量
(件)的函数解析式;
(2)年产量为多少件时,该厂在这一商品的生产中所获利润最大?




(1)写出年利润


(2)年产量为多少件时,该厂在这一商品的生产中所获利润最大?
某公司一年需购买某种原料600吨,设公司每次都购买
吨,每次运费为3万元,一年的总存储费为
万元,一年的总运费与总存储费之和为
(单位:万元).
(1)试用解析式得
表示成
的函数;
(2)当
为何值时,
取得最小值?并求出
的最小值.



(1)试用解析式得


(2)当



为响应十九大报告提出的实施乡村振兴战略,某村庄投资
万元建起了一座绿色农产品加工厂.经营中,第一年支出
万元,以后每年的支出比上一年增加了
万元,从第一年起每年农场品销售收入为
万元(前
年的纯利润综合=前
年的 总收入-前
年的总支出-投资额
万元).
(1)该厂从第几年开始盈利?
(2)该厂第几年年平均纯利润达到最大?并求出年平均纯利润的最大值.








(1)该厂从第几年开始盈利?
(2)该厂第几年年平均纯利润达到最大?并求出年平均纯利润的最大值.