- 集合与常用逻辑用语
- 函数与导数
- 求函数的零点
- + 根据零点求函数解析式中的参数
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
若存在
与正实数
,使得
成立,则称函数
在
处存在距离为
的对称点,把具有这一性质的函数
称之为“
型函数”.
(1)设
,试问
是否是“
型函数”?若是,求出实数
的值;若不是,请说明理由;
(2)设
对于任意
都是“
型函数”,求实数
的取值范围.








(1)设




(2)设




已知函数f(x)是定义在R上的奇函数,且当x≤0时,f(x)=x2+2x.

(1)现已画出函数f(x)在y轴左侧的图象,如图所示,请补全函数f(x)的图象;
(2)求出函数f(x)(x>0)的解析式;
(3)若方程f(x)=a恰有3个不同的解,求a的取值范围.

(1)现已画出函数f(x)在y轴左侧的图象,如图所示,请补全函数f(x)的图象;
(2)求出函数f(x)(x>0)的解析式;
(3)若方程f(x)=a恰有3个不同的解,求a的取值范围.