- 集合与常用逻辑用语
- 函数与导数
- 二次函数的定义域
- + 求二次函数的值域
- 求二次函数的解析式
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
,
.
(1)设直线
与曲线
和
分别相交于点
,且曲线
和
在点
处的切线平行,若方程
有四个不同的实根,求实数
的取值范围;
(2)设函数
满足
,其中
,
分别是函数
与
的导函数;试问是否存在实数
,使得当
,
取得最大值,若存在,求出
的取值范围;若不存在,说明理由.


(1)设直线









(2)设函数










设二次函数
满足下列条件:①当
时,
的最小值为
,且图象关于直线
对称;②当
时,
恒成立.
(1)求
的值;
(2)求
的解析式;
(3)若
在区间
上恒有
,求实数
的取值范围.







(1)求

(2)求

(3)若




甲、乙两人连续6年对某县农村甲鱼养殖业的规模(产量)进行调查,提供了两个方面的信息如下图所示。

甲调查表明:每个甲鱼池平均出产量从第一年1万只甲鱼上升到第6年2万只。
乙调查表明:甲鱼池个数由第1年30个减少到第6年10个,请你根据提供的信息说明:
(1)第2年甲鱼池的个数及全县出产甲鱼总数;
(2)到第6年这个县的甲鱼养殖业的规模比第1年是扩大了还是缩小了?说明理由;
(3)哪一年的规模最大?说明理由

甲调查表明:每个甲鱼池平均出产量从第一年1万只甲鱼上升到第6年2万只。
乙调查表明:甲鱼池个数由第1年30个减少到第6年10个,请你根据提供的信息说明:
(1)第2年甲鱼池的个数及全县出产甲鱼总数;
(2)到第6年这个县的甲鱼养殖业的规模比第1年是扩大了还是缩小了?说明理由;
(3)哪一年的规模最大?说明理由