- 集合与常用逻辑用语
- 函数与导数
- 函数奇偶性的定义与判断
- 由奇偶性求函数解析式
- + 函数奇偶性的应用
- 抽象函数的奇偶性
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
若
和
都是定义在
上的函数,则“
与
同是奇函数或同是偶函数”是“
是偶函数”的()






A.充分非必要条件. | B.必要非充分条件. |
C.充要条件. | D.既非充分又非必要条件 |
设
,
是定义在R上的函数,
,则“
,
均为奇函数”是“
为偶函数”的( )






A.充要条件 | B.充分而不必要的条件 |
C.必要而不充分的条件 | D.既不充分也不必要的条件 |
有下列命题
①命题“∃x∈R,使得x2+1>3x”的否定是“∀x∈R,都有x2+1<3x”;
②设p、q为简单命题,若“p∨q”为假命题,则“¬p∧¬q为真命题”;
③“a>2”是“a>5”的充分不必要条件;
④若函数f(x)=(x+1)(x+a)为偶函数,则a=﹣1;
其中所有正确的说法序号是
①命题“∃x∈R,使得x2+1>3x”的否定是“∀x∈R,都有x2+1<3x”;
②设p、q为简单命题,若“p∨q”为假命题,则“¬p∧¬q为真命题”;
③“a>2”是“a>5”的充分不必要条件;
④若函数f(x)=(x+1)(x+a)为偶函数,则a=﹣1;
其中所有正确的说法序号是