- 集合与常用逻辑用语
- 函数与导数
- 函数奇偶性的定义与判断
- 由奇偶性求函数解析式
- + 函数奇偶性的应用
- 抽象函数的奇偶性
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数f(x)=
(1) 判别函数f(x)的奇偶性;
(2) 判断函数f(x)的单调性,并根据函数单调性的定义证明你的判断正确;
(3) 求关于x的不等式f(1-x2)+f(2x+2)<0的解集.
定义在R上的偶函数f(x)的导函数为f ′(x),若对任意的实数x,都有2f(x)+xf ′(x)<2恒成立,则使x2f(x)-f(1)<x2-1成立的实数x的取值范围为
A.{x|x≠±1} | B.(-∞,-1)∪(1,+∞) | C.(-1,1) | D.(-1,0)∪(0,1) |
设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式
的解集为( )

A.(-1,0)∪(1,+∞) | B.(-∞,-1)∪(0,1) |
C.(-∞,-1)∪(1,+∞) | D.(-1,0)∪(0,1) |