- 集合与常用逻辑用语
- 函数与导数
- 函数的单调性
- + 函数的最值
- 利用函数单调性求最值
- 根据函数的最值求参数
- 函数的奇偶性
- 函数的周期性
- 函数的对称性
- 函数的图象
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
已知函数
,
.
(1)设函数
,求函数
在区间
上的值域;
(2)定义
表示
中较小者,设函数
.
①求函数
的单调区间及最值;
②若关于
的方程
有两个不同的实根,求实数
的取值范围.


(1)设函数



(2)定义




①求函数

②若关于



已知函数
,将
的图象向右平移两个单位长度,得到函数
的图象.
(1)求函数
的解析式;
(2)若方程
在
上有且仅有一个实根,求
的取值范围;
(3)若函数
与
的图象关于直线
对称,设
,已知
对任意的
恒成立,求
的取值范围.



(1)求函数

(2)若方程



(3)若函数







高斯是德国著名的数学家,近代数学奠基者之一,享有“数学王子”的称号,用其名字命名的“高斯函数”为:设
,用
表示不超过
的最大整数,则
称为高斯函数,例如:
,
,已知函数
,则函数
的值域是( )








A.![]() | B.![]() | C.![]() | D.![]() |