- 集合与常用逻辑用语
- 函数与导数
- 常见(一次函数、二次函数、反比例函数等)的函数值域
- 复杂(根式型、分式型等)函数的值域
- + 根据值域求参数的值或者范围
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
设函数
的定义域为
,若存在非零常数
使得对于任意
有
且
,则称
为
上的
高调函数.对于定义域为
的奇函数
,当
,若
为
上的4高调函数,求实数
的取值范围.















已知函数
(其中
是实数常数,
)
(1)若
,函数
的图像关于点(—1,3)成中心对称,求
的值;
(2)若函数
满足条件(1),且对任意
,总有
,求
的取值范围;
(3)若b=0,函数
是奇函数,
,
,且对任意
时,不等式
恒成立,求负实数
的取值范围.



(1)若



(2)若函数




(3)若b=0,函数






函数
在
上是减函数,在
上是增函数;函数
在
上是减函数,在
上是增函数;函数
在
上是减函数,在
上是增函数;……利用上述所提供的信息解决问题:若函数
的值域是
,则实数
的值是












设a>1,若仅有一个常数c使得对于任意的x∈[a,2a],都有y∈[a,a2]满足方程logax+logay=c,这时a的取值的集合为________
函数
的定义域为
,若满足:①
在
内是单调函数;②存在
,使得
在
上的值域为
,则称函数
为“成功函数”,若函数
是“成功函数”,则
的取值范围为_________.











