- 集合与常用逻辑用语
- 函数与导数
- + 函数及其性质
- 函数及其表示
- 函数的基本性质
- 一次函数与二次函数
- 指对幂函数
- 函数的应用
- 导数及其应用
- 定积分
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
某购物网站在2017年11月开展“买三免一”活动,规则是“购买3件商品,最便宜的一件商品免费”,比如如下结算案例:


如果在此网站上购买的三件商品价格如下图所示,按照“买三免一”的规则,购买这三件商品的实际折扣为________________折.
在这个网站上购买3件商品,按照“买三免一”的规则,这3件商品实际折扣力度最大约为___________________折(保留一位小数).
已知函数
,且
.
(
)求函数
在
上的单调区间,并给出证明.
(
)设关于
的方程
的两根为
,
,试问是否存在实数
,使得不等式
对任意的
及
恒成立?若存在,求出
的取值范围;若不存在,说明理由.


(



(










定义在(0,+∞)上的函数f(x),对于任意的m,n∈(0,+∞),都有f(mn)=f(m)+f(n)成立,当x>1时,f(x)<0.
(1)求证:1是函数f(x)的零点;
(2)求证:f(x)是(0,+∞)上的减函数;
(3)当f(2)=
时,解不等式f(ax+4)>1.
(1)求证:1是函数f(x)的零点;
(2)求证:f(x)是(0,+∞)上的减函数;
(3)当f(2)=

求“方程
的解”有如下解题思路:设函数
,则函数
在
上单调递增,且
,所以原方程有唯一解
.类比上述解题思路,方程
的解集为( )







A.![]() | B.![]() | C.![]() | D.![]() |
如果函数
在其定义域内存在实数
,使得
成立,则称函数
为“可拆分函数”.
(1)试判断函数
是否为“可拆分函数”?并说明理由;
(2)证明:函数
为“可拆分函数”;
(3)设函数
为“可拆分函数”,求实数
的取值范围.




(1)试判断函数

(2)证明:函数

(3)设函数

