- 集合与常用逻辑用语
- 函数与导数
- + 函数及其性质
- 函数及其表示
- 函数的基本性质
- 一次函数与二次函数
- 指对幂函数
- 函数的应用
- 导数及其应用
- 定积分
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
将函数
的图象向左平移1个单位,再将图象上的所有点的纵坐标伸长到原来的2倍(横坐标不变),得到函数
的图象.
(1)求函数
的解析式和定义域;
(2)求函数
的最大值.


(1)求函数

(2)求函数

对于函数
,如果存在实数
使得
,那么称
为
的生成函数.
(1)函数
,是否为
的生成函数?说明理由;
(2)设
,
,当
时生成函数
,求
的对称中心(不必证明);
(3)设
,
,取
,
,生成函数
,若函数
的最小值是5,求实数
的值.





(1)函数


(2)设





(3)设






