- 集合与常用逻辑用语
- 函数与导数
- 函数及其性质
- 一次函数与二次函数
- 指对幂函数
- 函数的应用
- 导数及其应用
- 定积分
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
关于函数
,给出以下四个命题,其中真命题的序号是_______.
①
时,
单调递减且没有最值;
②方程
一定有解;
③如果方程
有解,则解的个数一定是偶数;
④
是偶函数且有最小值.

①


②方程

③如果方程

④

如图,


















(1)求


(2)已知警员的对讲机的有效通话距离是






已知二次函数
的图象经过
三点.
(1)求函数
的解析式,并求
的最小值;
(2)是否存在常数
,使得当实数
满足
时,总有
恒成立,若存在求
的值,不存在说明理由.


(1)求函数


(2)是否存在常数





定义:若函数
的定义域为
,且存在非零常数
,对任意
,
恒成立,则称
为线周期函数,
为
的线周期.
(1)下列函数①
,②
,③
(其中
表示不超过x的最大整数),是线周期函数的是 (直接填写序号);
(2)若
为线周期函数,其线周期为
,求证:
为周期函数;
(3)若
为线周期函数,求
的值.









(1)下列函数①




(2)若



(3)若


某餐厅经营盒饭生意,每天的房租、人员工资等固定成本为200元,每盒盒饭的成本为15元,销售单价与日均销售量的关系如下表

根据以上数据,当这个餐厅每盒盒饭定价______元时,利润最大

根据以上数据,当这个餐厅每盒盒饭定价______元时,利润最大
A.16.5 | B.19.5 | C.21.5 | D.22 |