- 集合与常用逻辑用语
- 函数与导数
- 函数及其性质
- 一次函数与二次函数
- 指对幂函数
- 函数的应用
- 导数及其应用
- 定积分
- 三角函数与解三角形
- 平面向量
- 数列
- 不等式
- 空间向量与立体几何
- 平面解析几何
- 计数原理与概率统计
- 推理与证明
- 算法与框图
- 复数
- 几何证明选讲
- 不等式选讲
- 矩阵与变换
- 初中衔接知识点
- 竞赛知识点
函数
,关于
的不等式
的解集为
.
(Ⅰ)求
、
的值;
(Ⅱ)设
.
(i)若不等式
在
上恒成立,求实数
的取值范围;
(ii)若函数
有三个不同的零点,求实数
的取值范围(
为自然对数的底数).




(Ⅰ)求


(Ⅱ)设

(i)若不等式



(ii)若函数



水培植物需要一种植物专用营养液,已知每投放
且
个单位的营养液,它在水中释放的浓度
(克/升)随着时间
(天)变化的函数关系式近似为
,其中
,若多次投放,则某一时刻水中的营养液浓度为每次投放的营养液在相应时刻所释放的浓度之和,根据经验,当水中营养液的浓度不低于4(克/升)时,它才能有效.
(1)若只投放一次2个单位的营养液,则有效时间最多可能持续几天?
(2)若先投放2个单位的营养液,4天后再投放b个单位的营养液,要使接下来的2天中,营养液能够持续有效,试求
的最小值.






(1)若只投放一次2个单位的营养液,则有效时间最多可能持续几天?
(2)若先投放2个单位的营养液,4天后再投放b个单位的营养液,要使接下来的2天中,营养液能够持续有效,试求

某市将举办2020年新年大型花卉展览活动,举办方将建一块占地10000平方米的矩形展览场地ABCD,设计要求该场地的任何一边长度不得超过200米.场地中间设计三个矩形展览花圃①,②,③,其中花圃②与③是全等的矩形,每个花圃周围均是宽为5米的赏花路径.其中①号花圃的一边长度为25米.如图所示,设三个花圃占地总面积为S平方米,矩形展览场地的BC长为x米.

(1)试将S表示为x的函数,并写出定义域;
(2)问应该如何设计矩形场地的边长,使花圃占地总面积S取得最大值.

(1)试将S表示为x的函数,并写出定义域;
(2)问应该如何设计矩形场地的边长,使花圃占地总面积S取得最大值.
已知函数
(
为常数,
).给你四个函数:①
;②
;③
;④
.
(1)当
时,求不等式
的解集;
(2)求函数
的最小值;
(3)在给你的四个函数中,请选择一个函数(不需写出选择过程和理由),该函数记为
,
满足条件:存在实数a,使得关于x的不等式
的解集为
,其中常数s,
,且
.对选择的
和任意
,不等式
恒成立,求实数a的取值范围.







(1)当


(2)求函数

(3)在给你的四个函数中,请选择一个函数(不需写出选择过程和理由),该函数记为








