- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 中点四边形
- 利用(特殊)平行四边形的对称性求阴影面积
- + (特殊)平行四边形的动点问题
- 四边形中的线段最值问题
- 四边形其他综合问题
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
在梯形ABCD中,AD∥BC,∠BAD=90°,AD=8,动点P从A出发,以每秒1个单位的速度沿A―B―C―D向D运动.设P运动的时间为t秒,△ADP的面积为S,S关于t的图象如图所示,则下列结论中正确的个数()①AB=3;②S的最大值是12;③a=7;④当t=10时,S="4.8" .


A.1个 | B.2个 | C.3个 | D.4个 |
如图,在直角坐标系中,长方形OABC的边OC在x轴上,OA=5,OC=4,若矩形以每秒2个单位长度的速度沿y轴正方向运动。同时点M从O点出发,以每秒1个单位长度的速度沿O→C→B→A的路线运动。当M点运动到点A时停止运动,矩形OABC也停止运动.
(1)求点M从O点运动到点A所需时间;
(2)求点M运动了6秒后的位置;
(3)求当运动停止时,矩形扫过的面积.
(1)求点M从O点运动到点A所需时间;
(2)求点M运动了6秒后的位置;
(3)求当运动停止时,矩形扫过的面积.

如图1,在等腰梯形ABCO中,AB∥CO,E是AO的中点,过点E作EF∥OC交BC于F,AO=4,OC=6,∠AOC=60°.现把梯形ABCO放置在平面直角坐标系中,使点O与原点重合,OC在x轴正半轴上,点A,B在第一象限内.
(1)求点E的坐标及线段AB的长;
(2)点P为线段EF上的一个动点,过点P作PM⊥EF交OC于点M,过M作MN∥AO交折线ABC于点N,连结PN,设PE=x.△PMN的面积为S.
①求S关于x的函数关系式;
②△PMN的面积是否存在最大值,若不存在,请说明理由.若存在,求出面积的最大值;

(3)另有一直角梯形EDGH(H在EF上,DG落在OC上,∠EDG=90°,且DG=3,HG∥BC.现在开始操作:固定等腰梯形ABCO,将直角梯形EDGH以每秒1个单位的速度沿OC方向向右移动,直到点D与点C重合时停止(如图2).设运动时间为t秒,运动后的直角梯形为E′D′G′H′(如图3);试探究:在运动过程中,等腰梯ABCO与直角梯形E′D′G′H′重合部分的面积y与时间t的函数关系式.
(1)求点E的坐标及线段AB的长;
(2)点P为线段EF上的一个动点,过点P作PM⊥EF交OC于点M,过M作MN∥AO交折线ABC于点N,连结PN,设PE=x.△PMN的面积为S.
①求S关于x的函数关系式;
②△PMN的面积是否存在最大值,若不存在,请说明理由.若存在,求出面积的最大值;

(3)另有一直角梯形EDGH(H在EF上,DG落在OC上,∠EDG=90°,且DG=3,HG∥BC.现在开始操作:固定等腰梯形ABCO,将直角梯形EDGH以每秒1个单位的速度沿OC方向向右移动,直到点D与点C重合时停止(如图2).设运动时间为t秒,运动后的直角梯形为E′D′G′H′(如图3);试探究:在运动过程中,等腰梯ABCO与直角梯形E′D′G′H′重合部分的面积y与时间t的函数关系式.
四边形ABCD是矩形,点P是直线AD与BC外的任意一点,连接PA,PB,PC,PD.请解答下列问题:
(1)如图(1),当点P在线段BC的垂直平分线MN上(对角线AC与BD的交点Q除外)时,证明△PAC≌△PDB;

(2)如图(2),当点P在矩形ABCD内部时,求证:PA2+PC2=PB2+PD2;

(3)若矩形ABCD在平面直角坐标系xoy中,点B的坐标为(1,1),点D的坐标为(5,3),如图(3)所示,设△PBC的面积为y,△PAD的面积为x,求y与x之间的函数关系式.
(1)如图(1),当点P在线段BC的垂直平分线MN上(对角线AC与BD的交点Q除外)时,证明△PAC≌△PDB;

(2)如图(2),当点P在矩形ABCD内部时,求证:PA2+PC2=PB2+PD2;

(3)若矩形ABCD在平面直角坐标系xoy中,点B的坐标为(1,1),点D的坐标为(5,3),如图(3)所示,设△PBC的面积为y,△PAD的面积为x,求y与x之间的函数关系式.

如图,在等腰梯形ABCD中,AB∥DC,AB=8cm,CD=2cm,AD=6cm.点P从点A出发,以2cm/s的速度沿AB向终点B运动;点Q从点C出发,以1cm/s的速度沿CD、DA向终点A运动(P、Q两点中,有一个点运动到终点时,所有运动即终止).设P、Q同时出发并运动了t秒.

(1)当PQ将梯形ABCD分成两个直角梯形时,求t的值;
(2)试问是否存在这样的t,使四边形PBCQ的面积是梯形ABCD面积的一半?若存在,求出这样的t的值,若不存在,请说明理由.

(1)当PQ将梯形ABCD分成两个直角梯形时,求t的值;
(2)试问是否存在这样的t,使四边形PBCQ的面积是梯形ABCD面积的一半?若存在,求出这样的t的值,若不存在,请说明理由.
如图,梯形ABCD中,AD∥BC,∠BAD=90°,CE⊥AD于点E,AD=8㎝,BC=4㎝,AB=5㎝.从初始时刻开始,动点P沿着P、Q分别从点A,B同时出发,运动速度均为1㎝/s,动点P沿A—B—C—E的方向运动,到点E停止;动点Q沿B—C—E—D的方向运动,到点D停止,设运动时间为
s,△PAQ的面积为
㎝2.(这里我们把线段的面积看作是0)

解答下列问题
(1)当
=2s时,
= ㎝2,当
s时,
= ㎝2;
(2)当5≤
≤14时,求
与
之间的函数关系式;
(3)当动点P在线段BC上运动时,求出
梯形ABCD时
的值;
(4)直接写出整个运动过程中,使PQ与四边形ABCE的对角线平行的所有
的值.



解答下列问题
(1)当




(2)当5≤



(3)当动点P在线段BC上运动时,求出



(4)直接写出整个运动过程中,使PQ与四边形ABCE的对角线平行的所有

如图,在梯形ABCD中,AD∥BC,AB=5,AD=6,DC=4,∠C=45º. 动点M从B点出发沿线段BC以每秒1个单位长度的速度向终点C运动;动点N同时从C点出发沿C→D→A运动,在CD上的速度为每秒个单位长度,在DA上的速度为每秒1个单位长度,当其中一个点到达终点是另一个点也随之停止运动.设运动的时间为t秒.

(1)求BC的长.
(2)当四边形ABMN是平行四边形时,求t的值.
(3)试探究:t为何值时,△ABM为等腰三角形.

(1)求BC的长.
(2)当四边形ABMN是平行四边形时,求t的值.
(3)试探究:t为何值时,△ABM为等腰三角形.
如图,在直角梯形ABCD中,AD//BC,∠A=90°,AB=12,BC=21,AD=16.动点P从点B出发,沿射线BC的方向以每秒2个单位长的速度运动,动点Q同时从点A出发,在线段AD上以每秒1个单位长的速度向点D运动,当动点Q到达点D时另一个动点P也随之停止运动.设运动的时间为t(秒).

(1)设△DPQ的面积为S,求S与t之间的函数关系式及t的取值范围;
(2)当t为何值时,以P、C、D、Q为顶点的四边形是平行四边形?

(1)设△DPQ的面积为S,求S与t之间的函数关系式及t的取值范围;
(2)当t为何值时,以P、C、D、Q为顶点的四边形是平行四边形?
如图,矩形ABCD中,AB="10" cm,BC="6" cm.现有两个动点P,Q分别从A,B同时出发,点P在线段AB上沿AB方向作匀速运动,点Q在线段BC上沿BC方向作匀速运动,已知点P的运动速度为1 cm/s,运动时间为ts.

(1)设点Q的运动速度为
cm/s.
①当△DPQ的面积最小时,求t的值;
②当△DAP∽△QBP相似时,求t的值.
(2)设点Q的运动速度为acm/s,问是否存在a的值,使得△DAP与△PBQ和△QCD这两个三角形都相似?若存在,请求出a的值;若不存在,请说明理由.

(1)设点Q的运动速度为

①当△DPQ的面积最小时,求t的值;
②当△DAP∽△QBP相似时,求t的值.
(2)设点Q的运动速度为acm/s,问是否存在a的值,使得△DAP与△PBQ和△QCD这两个三角形都相似?若存在,请求出a的值;若不存在,请说明理由.