- 数与式
- 方程与不等式
- 函数
- 图形的性质
- + 根据正方形的性质与判定求角度
- 根据正方形的性质与判定求线段长
- 根据正方形的性质与判定求面积
- 根据正方形的性质与判定证明
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在Rt△MNP中,∠N=60°,MN=3,NP=6,正方形ABCD的边长为1,它的一边AD在MN上,且顶点A与M重合.现将正方形ABCD沿边MN→NP进行翻滚,直到正方形有一个顶点与P重合即停止滚动,正方形在整个翻滚过程中,点A所经过的路线与Rt△MNP的两边MN、NP所围成的图形的面积是()


A.![]() | B.2π+2 | C.![]() | D.![]() |
如图,在Rt△ABC中,∠C=90°,∠BAC=40°,AD是△ABC的一条角平分线,点E,F,G分别在AD,AC,BC上,且四边形CGEF是正方形,则∠DEB的度数为()


A.40° | B.45° | C.50° | D.55° |
如图,已知正方形ABCD的对角线AC、BD相交于点O,E是AC上一点,过点A作AG⊥EB,垂足为G,AG交BD于F,则OE=OF.
(1)请证明OE=OF
(2)解答(1)题后,某同学产生了如下猜测:对上述命题,若点E在AC的延长线上,AG⊥EB,AG交 EB的延长线于 G,AG的延长线交DB的延长线于点F,其他条件不变,则仍有OE=OF.问:猜测所得结论是否成立?若成立,请给出证明;若不成立,请说明理由.
(1)请证明OE=OF
(2)解答(1)题后,某同学产生了如下猜测:对上述命题,若点E在AC的延长线上,AG⊥EB,AG交 EB的延长线于 G,AG的延长线交DB的延长线于点F,其他条件不变,则仍有OE=OF.问:猜测所得结论是否成立?若成立,请给出证明;若不成立,请说明理由.

如图1,有一组平行线l1∥l2∥l3∥l4,正方形ABCD的四个顶点分别在l1,l2,l3,l4上,EG过点D且垂直l1于点E,分别交l2,l4于点F,G,EF=DG=1,DF=2.
(1)AE=__________,正方形ABCD的边长=__________;
(2)如图2,将∠AEG绕点A顺时针旋转得到∠AE′D′,旋转角为α(0°<α<90°),点D′在直线l3上,以AD′为边在E′D′左侧作菱形AB′C′D′,使B′、C′分别在直线l2,l4上.
①写出∠B′AD′与α的数量关系并给出证明;
②若α=30°,直接写出菱形AB′C′D′的边长为__________.
(1)AE=__________,正方形ABCD的边长=__________;
(2)如图2,将∠AEG绕点A顺时针旋转得到∠AE′D′,旋转角为α(0°<α<90°),点D′在直线l3上,以AD′为边在E′D′左侧作菱形AB′C′D′,使B′、C′分别在直线l2,l4上.
①写出∠B′AD′与α的数量关系并给出证明;
②若α=30°,直接写出菱形AB′C′D′的边长为__________.

如图,在正方形ABCD中,点E是AD边上的一点,AF⊥BE于F,CG⊥BE于G.
(1)若∠FAE=20°,求∠DCG的度数;
(2)猜想:AF,FG,CG三者之间的数量关系,并证明你的猜想.
(1)若∠FAE=20°,求∠DCG的度数;
(2)猜想:AF,FG,CG三者之间的数量关系,并证明你的猜想.

如图①,在平面直角坐标系中,AB⊥x轴于B,AC⊥y轴于C,点C(0,m),A(n,m),且(m-4)2+n2-8n=-16,过C点作∠ECF分别交线段AB,OB于E,F两点.

(1)求A点的坐标;
(2)若OF+BE=AB,求证:CF=CE;
(3)如图②,若∠ECF=45°,给出两个结论:①OF+AE-EF的值不变;②OF+AE+EF的值不变,其中有且只有一个结论正确,请你判断出正确的结论,并加以证明和求出其值.

(1)求A点的坐标;
(2)若OF+BE=AB,求证:CF=CE;
(3)如图②,若∠ECF=45°,给出两个结论:①OF+AE-EF的值不变;②OF+AE+EF的值不变,其中有且只有一个结论正确,请你判断出正确的结论,并加以证明和求出其值.
请你认真阅读下面的小探究系列,完成所提出的问题.
(1)如图①,将角尺放在正方形ABCD上,使角尺的直角顶点E与正方形ABCD的顶点D重合,角尺的一边交CB于点F,另一边交BA的延长线于点G.求证:EF=EG;
(2)如图②,移动角尺,使角尺的顶点E始终在正方形ABCD的对角线BD上,其余条件不变,请你思考后直接回答EF和EG的数量关系:EF=EG(填“=”或“≠”);
(3)运用(1)(2)解答中所积累的活动经验和数学知识,完成下题:如图③,将(2)中的“正方形ABCD”改成“矩形ABCD”,使角尺的一边经过点A(即点G、A重合),其余条件不变,若AB=4,DG=3,求
的值.
(1)如图①,将角尺放在正方形ABCD上,使角尺的直角顶点E与正方形ABCD的顶点D重合,角尺的一边交CB于点F,另一边交BA的延长线于点G.求证:EF=EG;
(2)如图②,移动角尺,使角尺的顶点E始终在正方形ABCD的对角线BD上,其余条件不变,请你思考后直接回答EF和EG的数量关系:EF=EG(填“=”或“≠”);
(3)运用(1)(2)解答中所积累的活动经验和数学知识,完成下题:如图③,将(2)中的“正方形ABCD”改成“矩形ABCD”,使角尺的一边经过点A(即点G、A重合),其余条件不变,若AB=4,DG=3,求


如图,正方形ABCD中,点E、F分别是BC、CD上的点,且CE=CF,点P、Q分别是AF、EF的中点,连接PD、PQ、DQ,则△PQD的形状是( )


A.等腰三角形 | B.直角三角形 |
C.等腰非直角三角形 | D.等腰直角三角形 |