- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 正方形性质理解
- 根据正方形的性质求角度
- 根据正方形的性质求线段长
- + 根据正方形的性质求面积
- 正方形折叠问题
- 求正方形重叠部分面积
- 根据正方形的性质证明
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,将n个边长都为2的正方形按如图所示摆放,点A1、A2、A3,…,An分别是正方形的中心,则这n个正方形重叠的面积之和是( )


A.n | B.n-1 |
C.4n | D.4(n-1) |
如图,正方形AEFG的边AE放置在正方形ABCD的对角线AC上,EF与CD交于点M,得四边形AEMD,且两正方形的边长均为2,则两正方形重合部分(阴影部分)的面积为()


A.﹣4+4![]() | B.4![]() | C.8﹣4![]() | D.![]() |
在长方形纸片ABCD中,AB=m,AD=n,将两张边长分别为6和4的正方形纸片按图1,图2两种方式放置(图1,图2中两张正方形纸片均有部分重叠),长方形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1中阴影部分的面积为S1,图2中阴影部分的面积为S2.

(1)在图1中,EF=___,BF=____;(用含m的式子表示)
(2)请用含m、n的式子表示图1,图2中的S1,S2,若m-n=2,请问S2-S1的值为多少?

(1)在图1中,EF=___,BF=____;(用含m的式子表示)
(2)请用含m、n的式子表示图1,图2中的S1,S2,若m-n=2,请问S2-S1的值为多少?
探究下面的问题:
(1)如图甲,在边长为a的正方形中去掉一个边长为b的小正方形(a>b),把余下的部分剪拼成如图乙的一个长方形,通过计算两个图形(阴影部分)的面积,验证了一个等式,这个等式是________(用式子表示),即乘法公式中的___________公式.

(2)运用你所得到的公式计算:
①10.7×9.3
②
(1)如图甲,在边长为a的正方形中去掉一个边长为b的小正方形(a>b),把余下的部分剪拼成如图乙的一个长方形,通过计算两个图形(阴影部分)的面积,验证了一个等式,这个等式是________(用式子表示),即乘法公式中的___________公式.

(2)运用你所得到的公式计算:
①10.7×9.3
②

如图,四边形ABCD和四边形CEFG都是正方形,且B,C,E三点都在同一条直线上,连接BD,DF,BF,当BC=6时,△DBF的面积为_____________.

如图是由“赵爽弦图”变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD、正方形EFGH、正方形MNPQ的面积分别为S1、S2、S3.若S1+S2+S3=60,则S2的值是( )


A.12 | B.15 | C.20 | D.30 |
为增加绿化面积,某小区将原来正方形地砖更换为如图所示的正八边形植草砖,更换后,图中阴影部分为植草区域,设正八边形与其内部小正方形的边长都为a,则阴影部分的面积为( )


A.2a2 | B.3a2 | C.4a2 | D.5a2 |
如图,纸上有五个边长为1的小正方形组成的图形纸,我们可以把它剪 开拼成一个正方形.

(1)拼成的正方形的面积是 , 它的边长是 .
(2)请你在3×3方格图中,连结四个格点组成一个面积为5的正方形.

(3)如图是十个小正方形组成的图形纸,请你将其剪开并拼成正方形,在原图上用虚线画出剪拼示意图.拼成的大正方形的边长是 .

(1)拼成的正方形的面积是 , 它的边长是 .
(2)请你在3×3方格图中,连结四个格点组成一个面积为5的正方形.

(3)如图是十个小正方形组成的图形纸,请你将其剪开并拼成正方形,在原图上用虚线画出剪拼示意图.拼成的大正方形的边长是 .

如图是2002年在北京召开的国际数学家大会的会徽,它由4个相同的直角三角形拼成,已知直角三角形的两条直角边长分别为3和4,则大正方形ABCD和小正方形EFGH的面积比是()


A.1:5 | B.1:25 | C.5:1 | D.25:1 |
如图,在正方形纸片ABCD中,E为BC的中点.将纸片折叠,使点A与点E重合,点D落在点D'处,MN为折痕.若梯形ADMN的面积为S1,梯形BCMN的面积为S2,则
的值为 .

