如图,在△ABC中,AB=AC,AD平分∠BAC,O是AC的中点,连接DO,过点C作CE∥DA,交DO的延长线于点E,连接AE.

(1)求证:四边形ADCE是矩形;
(2)若F是CE上的动点(点F不与C、E重合),连接AF、DF、BE,请直接写出图2中与四边形ABDF面积相等的所有的三角形和四边形(四边形ABDF除外)

(1)求证:四边形ADCE是矩形;
(2)若F是CE上的动点(点F不与C、E重合),连接AF、DF、BE,请直接写出图2中与四边形ABDF面积相等的所有的三角形和四边形(四边形ABDF除外)
已知,在矩形ABCD中,AB=a,BC=b,动点M从点A出发沿边AD向点D运动(点M与点A、点D不重合).
(1)如图1,当b=2a,点M运动到边AD的中点时,请证明∠BMC=90°;
(2)如图2,当a=2,b=5,求点M运动到什么位置时,∠BMC=90°;
(3)如图3,在第(2)问的条件下,若另一动点N从点C出发沿边C→M→B运动,且点M、点N的出发时间与运动速度都相同,过点N作AD和垂线交AD于点H,当△MNH与△MBC相似时,求MH的长.
(1)如图1,当b=2a,点M运动到边AD的中点时,请证明∠BMC=90°;
(2)如图2,当a=2,b=5,求点M运动到什么位置时,∠BMC=90°;
(3)如图3,在第(2)问的条件下,若另一动点N从点C出发沿边C→M→B运动,且点M、点N的出发时间与运动速度都相同,过点N作AD和垂线交AD于点H,当△MNH与△MBC相似时,求MH的长.

如图点P是矩形ABCD的边AD上的任一点,AB=8, BC=15,则点P到矩形的两条对角线AC和BD的距离之和是____________.

(满分l0分)如图,A,B两点分别位于一个池塘的两端,由于受条件限制无法直接度量A,B间的距离.小明利用学过的知识,设计了如下三种测量方法,如图①,②,③所示(图中a,b,c…表示长度,α,β,θ…表示角度).

(1)请你写出小明设计的三种测量方法中AB的长度:图①AB=_______,图②AB=_______,图③AB=_______;
(2)请你再设计一种不同于以上三种的测量方法,画出示意图(不要求写画法),用字母标注需测量的边或角,并写出AB的长度.

(1)请你写出小明设计的三种测量方法中AB的长度:图①AB=_______,图②AB=_______,图③AB=_______;
(2)请你再设计一种不同于以上三种的测量方法,画出示意图(不要求写画法),用字母标注需测量的边或角,并写出AB的长度.
如图,在菱形ABCD中,点E为AB的中点,请只用无刻度的直尺作图.
(1)如图1,在CD上找点F,使点F是CD的中点;
(2)如图2,在AD上找点G,使点G是AD的中点.
(1)如图1,在CD上找点F,使点F是CD的中点;
(2)如图2,在AD上找点G,使点G是AD的中点.

如图,在□ABCD中,对角线AC、BD相交于点O,且OA=O

A. (1)求证:四边形ABCD是矩形; (2)若AB=6,∠AOB=120°,求BC的长. |

如图,四边形ABCD中,AB∥DC,∠B=90°,F为DC上一点,且FC=AB,E为AD上一点,EC交AF于点G.
(1)求证:四边形ABCF是矩形;
(2)若EA=EG,求证:ED=EC.
(1)求证:四边形ABCF是矩形;
(2)若EA=EG,求证:ED=EC.
