- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 矩形性质理解
- 利用矩形的性质求角度
- 根据矩形的性质与判定求线段长
- 根据矩形的性质与判定求面积
- 利用矩形的性质证明
- 求矩形在平面直角坐标系中的坐标
- + 矩形与折叠问题
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,把一个矩形纸片ABCD沿EF折叠后,点D、C分别落在D′、C′的位置.若∠EFB=α,则∠AED′=____________.

如图所示,折叠矩形ABCD的一边AD,使点D落在BC边上的点F处,已知AB=8,BC=10,
(1)求BF的长;
(2)求△ECF的面积.
(1)求BF的长;
(2)求△ECF的面积.

如图,在矩形ABCD中,点E在边CD上,将该矩形沿AE折叠,使点D落在边BC上的点F处,过点F作FG∥CD交AE于点G,连接D

A. (1)求证:四边形DEFG为菱形; (2)若AD=10,AB=8,求菱形DEFG的面积. |

如图,将矩形ABCD的四个角向内翻折后,恰好拼成一个无缝隙无重叠的四边形EFGH,EH = 6cm,EF = 8cm,则边AB的长度等于( )


A.10cm | B.9.6cm | C.8.4cm | D.8cm |
在矩形ABCD中,AB=8,BC=10,E是AB上一点,将矩形ABCD沿CE折叠后,点B落在AD边的点F上,则折痕CE的长为______ .

如图,矩形纸片ABCD中,AB=6cm,BC=8cm,现将其沿AE对折,使得点B落在边AD上的点B1处,折痕与边BC交于点E,则CE的长为( )


A.1cm | B.2cm | C.4cm | D.6cm |
如图,已知矩形ABCD,将△BCD沿对角线BD折叠,记点C的对应点为
若
则∠BDC的度数为( )




A.55° | B.45° | C.60° | D.65° |