- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 矩形性质理解
- 利用矩形的性质求角度
- 根据矩形的性质与判定求线段长
- 根据矩形的性质与判定求面积
- 利用矩形的性质证明
- 求矩形在平面直角坐标系中的坐标
- + 矩形与折叠问题
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,将四边形纸片ABCD沿AE向上折叠,使点B落在DC边上的点F处.若△AFD的周长为24 cm,△ECF的周长为8 cm,求四边形纸片ABCD的周长.

如图,在矩形ABCD中,AB=6,AD=10,点E是边BC的中点,联结AE,若将△ABE沿AE翻折,点B落在点F处,联结FC,则cos∠ECF=________ 

如图,把一个矩形纸片OABC放入平面直角坐标系中,使OA、OC分别落在x轴、y轴上,连接OB,将纸片OABC沿OB折叠,使点A落在A′的位置上.若OB=
,
,求点A′的坐标为__.



如图,正方形ABCD的边长为12 cm,在AB上有点P,且AP=5 cm,将正方形折叠,使点D与点P重合,折痕为EF,求△EAP的周长. 

如图,将矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上的F点处,已知CE=3cm,AB=8cm.求:
(1)AD的长;
(2)图中阴影部分的面积.
(1)AD的长;
(2)图中阴影部分的面积.

如图,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=5,OC=4.在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处.求D,E两点的坐标.
