- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 矩形性质理解
- 利用矩形的性质求角度
- 根据矩形的性质与判定求线段长
- 根据矩形的性质与判定求面积
- 利用矩形的性质证明
- 求矩形在平面直角坐标系中的坐标
- + 矩形与折叠问题
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为BE,若AB的长为2,则FM的长为( )


A.2 | B.![]() | C.![]() | D.1 |
如图,在矩形纸片ABCD中,AB=4,AD=3,折叠纸片使DA与对角线DB重合,点A落在点A′处,折痕为DE,则A′E的长是( )


A.1 | B.![]() | C.![]() | D.2 |
如图,把正方形纸片ABCD沿对边中点所在的直线对折后展开,折痕为MN,再过点B折叠纸片,使点A落在MN上的点F处,折痕为B

A.若AB的长为2,则FM的长为___. |

如图,在平面直角坐标系中,矩形OABC的顶点A在x轴正半轴上,顶点C在y轴正半轴上,点B(8,6),将△OCE沿OE折叠,使点C恰好落在对角线OB上D处,则E点坐标为 ( )


A.(3,6) | B.(![]() | C.(![]() | D.(1,6) |
如图,长方形纸片ABCD中,AB=4,将纸片折叠,折痕的一个端点F在边AD上,另一个端点G在边BC上,若顶点B的对应点E落在长方形内部,E到AD的距离为1,BG=5,则AF的长为_____.

如图,在矩形
中,
点
同时从点
出发,分别在
,
上运动,若点
的运动速度是每秒2个单位长度,且是点
运动速度的2倍,当其中一个点到达终点时,停止一切运动.以
为对称轴作
的对称图形
.点
恰好在
上的时间为__秒.在整个运动过程中,
与矩形
重叠部分面积的最大值为________________.
















如图,矩形ABCD中,AB=4,BC=2,把矩形ABCD沿过点A的直线AE折叠点D落在矩形ABCD内部的点D'处,则CD′的最小值是( )


A.2 | B.![]() | C.2![]() | D.2![]() |
如图,矩形ABCD中,AB=4cm,BC=8cm,把△ABC沿对角线AC折叠,得到△AB'C,B'C与AD相交于点E,则AE的长________.
