- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 多边形及其内角和
- + 平行四边形
- 平行四边形的性质
- 平行四边形的判定
- 平行四边形的判定与性质综合
- 三角形中位线
- 特殊的平行四边形
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,已知□ABCD的面积为100,P为边CD上的任一点,E,F分别为线段AP,BP的中点,则图中阴影部分的总面积为( )


A.30 | B.25 | C.22.5 | D.20 |
点O在△ABC的内部,点D,E,F,G分别是AB,OB,OC,AC的中点.
(1)如图1,求证:四边形DEFG是平行四边形;
(2)如图2,射线AO交BC边于点H,连接DH,GH,若AB=AC,DE⊥EF,在不添加任何辅助线的情况下,请直接写出图2中所有的等腰三角形(不包含以∠BAC为内角的三角形).
(1)如图1,求证:四边形DEFG是平行四边形;
(2)如图2,射线AO交BC边于点H,连接DH,GH,若AB=AC,DE⊥EF,在不添加任何辅助线的情况下,请直接写出图2中所有的等腰三角形(不包含以∠BAC为内角的三角形).

如图所示,已知AB∥CD,AD∥BC,AC与BD交于点O,AE⊥BD于E,CF⊥BD于E,图中全等三角形有( )


A.3对 | B.5对 | C.6对 | D.7对 |
已知,平行四边形
中,点
在
边上,且
,
与
交于点
;

(1)如果
,
,那么请用
、
来表示
;
(2)在原图中求作向量
在
、
方向上的分向量;(不要求写作法,但要指出所作图中表示结论的向量)








(1)如果





(2)在原图中求作向量



如图所示,△ABC中,点D、E、F分别在三边上,E是AC的中点,AD、BE、CF交于一点G,BD=2DC,S△GEC=3,S△GDC=4,则△ABC的面积是( )


A.25 | B.30 | C.35 | D.40 |
在下列给出的条件中,不能判定四边形ABCD一定是平行四边形的是( )
A.AB=CD,AD=BC | B.AB//CD,AD=BC | C.AB//CD,AB=CD | D.AB//CD,AD//BC |
如图,在四边形ABCD中,E、F、G、H分别是AB、BD、CD、AC的中点,要使四边形EFGH是菱形,四边形ABCD还应满足的一个条件是______.
