- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 几何图形初步
- 相交线与平行线
- 三角形
- + 四边形
- 多边形及其内角和
- 平行四边形
- 特殊的平行四边形
- 圆
- 命题与证明
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
已知正方形ABCD的边长为1,E为BC边的延长线上一点,CE=1,连接AE,与CD交于点F,连接BF并延长与线段DE交于点G,则BG的长为( )
A.![]() | B.![]() | C.![]() | D.![]() |
如图,已知等腰Rt△ABC和△CDE,AC=BC,CD=CE,连接BE、AD,P为BD中点,M为AB中点、N为DE中点,连接PM、PN、MN.
(1)试判断△PMN的形状,并证明你的结论;
(2)若CD=5,AC=12,求△PMN的周长.
(1)试判断△PMN的形状,并证明你的结论;
(2)若CD=5,AC=12,求△PMN的周长.

已知:正方形ABCD中,∠MAN=45°,∠MAN绕点A顺时针旋转,它的两边分别交CB,DC、DC(或它们的延长线)于点M,N.

(1)当∠MAN绕点A旋转到(如图1)时,求证:BM+DN=MN;
(2)当∠MAN绕点A旋转到如图2的位置时,猜想线段BM,DN和MN之间又有怎样的数量关系呢?请直接写出你的猜想。(不需要证明)

(1)当∠MAN绕点A旋转到(如图1)时,求证:BM+DN=MN;
(2)当∠MAN绕点A旋转到如图2的位置时,猜想线段BM,DN和MN之间又有怎样的数量关系呢?请直接写出你的猜想。(不需要证明)
如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△PAB=
S矩形ABCD,则点P到A、B两点距离之和PA+PB的最小值为_____.


已知:如图,在长方形
中,
,动点
从点
出发,以每秒
的速度沿
方向向点
运动,动点
从点
出发,以每秒
的速度沿
向点
运动,
同时出发,当点
停止运动时,点
也随之停止,设点
运动的时间为
秒.请回答下列问题:

(1)请用含
的式子表达
的面积
,并直接写出
的取值范围.
(2)是否存在某个
值,使得
和
全等?若存在,请求出所有满足条件的
值;若不存在,请说明理由.


















(1)请用含




(2)是否存在某个



