- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 几何图形初步
- 相交线与平行线
- 三角形
- + 四边形
- 多边形及其内角和
- 平行四边形
- 特殊的平行四边形
- 圆
- 命题与证明
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
正方形ABCD的边长为12,在其角上去掉两个全等的矩形DMNP和矩形BIJK,DM=IB=2,DP=BK=3,正方形EFGH顶点分别在正方形ABCD的边上,且EH过N点,则正方形EFGH的边长是()


A.10 | B.3![]() | C.4![]() | D.3![]() ![]() |
已知:如图,在四边形ABFC中,∠ACB=90°,
的垂直平分线EF交BC于点D,交AB于点E,且CF=AE.
(1)求证:四边形BECF是菱形;
(2)当∠A的大小为多少度时,四边形BECF是正方形?

(1)求证:四边形BECF是菱形;
(2)当∠A的大小为多少度时,四边形BECF是正方形?

如图,△ABC中,已知BE⊥AD,CF⊥AD,且BE=C

A. (1)请你判断AD是△ABC的中线还是角平分线?请证明你的结论. (2)连接BF、CE,若四边形BFCE是菱形,则△ABC中应添加一个条件 .(填上你认为正确的一个条件即可) |

(本题12分)如图甲,在△ABC中,E是AC边上的一点,
(1)在图甲中,作出以BE为对角线的平行四边形BDEF,使D、F分别在BC和AB边上;
(2)改变点E的位置,则图甲中所作的平行四边形BDEF有没有可能为菱形?若有,请在图乙中作出点E的位置(用尺规作图,并保留作图痕迹);若没有,请说明理由.
(1)在图甲中,作出以BE为对角线的平行四边形BDEF,使D、F分别在BC和AB边上;
(2)改变点E的位置,则图甲中所作的平行四边形BDEF有没有可能为菱形?若有,请在图乙中作出点E的位置(用尺规作图,并保留作图痕迹);若没有,请说明理由.

如图,在△ABC中,已知BE⊥AD,CF⊥AD,且BE=CF.
(1)请你判断AD是△ABC的中线还是角平分线?请证明你的结论.
(2)连接BF、CE,若四边形BFCE是菱形,则△ABC中应添加一个条件 .(填上你认为正确的一个条件即可)
(1)请你判断AD是△ABC的中线还是角平分线?请证明你的结论.
(2)连接BF、CE,若四边形BFCE是菱形,则△ABC中应添加一个条件 .(填上你认为正确的一个条件即可)

如图点P是矩形ABCD的边AD上的任一点,AB=8, BC=15,则点P到矩形的两条对角线AC和BD的距离之和是____________.

如图,将直角三角形纸片ABC沿边BC所在直线向右平移,使B点移至斜边BC的中点E处,连接AD、AE、CD.
(1)求证:四边形AECD是菱形.
(2)若直角三角形纸片ABC的斜边BC的长为100cm,且AC=60cm.求ED的长和四边形AECD的面积.
(1)求证:四边形AECD是菱形.
(2)若直角三角形纸片ABC的斜边BC的长为100cm,且AC=60cm.求ED的长和四边形AECD的面积.

如图,在四边形ABCD中,AD//BC,E、F为AB上两点,且△DAF≌△CBE.

求证:(1)∠A=90°;
(2)四边形ABCD是矩形.

求证:(1)∠A=90°;
(2)四边形ABCD是矩形.
如图(1),正方形ABCD中,点H从点C出发,沿CB运动到点B停止.连结DH交正方形对角线AC于点E,过点E作DH的垂线交线段AB、CD于点F、G.
(1)求证:DH=FG;
(2)在图(1)中延长FG与BC交于点P,连结DF、DP(如图(2)),试探究DF与DP的关系,并说明理由.

(1)求证:DH=FG;
(2)在图(1)中延长FG与BC交于点P,连结DF、DP(如图(2)),试探究DF与DP的关系,并说明理由.

