- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 几何图形初步
- 相交线与平行线
- 三角形
- + 四边形
- 多边形及其内角和
- 平行四边形
- 特殊的平行四边形
- 圆
- 命题与证明
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在△ABC中,AC=BC,∠B=30°,D是AC的中点,E是线段BC延长线上一动点,过点A作AF∥BE,与线段ED的延长线交于点F,连结AE、CF.
(1)求证:AF=CE;
(2)若CE=
BC,试判断四边形AFCE是什么样的四边形,并证明你的结论;
(3)若CE= BC,求证:EF⊥AC.
(1)求证:AF=CE;
(2)若CE=

(3)若CE= BC,求证:EF⊥AC.

如图①,在等腰直角三角板ABC中,斜边BC为2个单位长度,现把这块三角板在平面直角坐标系xOy中滑动,并使B、C两点始终分别位于y轴、x轴的正半轴上,直角顶点A与原点O位于BC两侧.
(1)取BC中点D,问OD+DA是否发生改变,若会,说明理由;若不会,求出OD+DA;
(2)你认为OA的长度是否会发生变化?若变化,那么OA最长是多少?OA最长时四边形OBAC是怎样的四边形?并说明理由;
(3)填空:当OA最长时A的坐标( , ),直线OA的解析式 .
(1)取BC中点D,问OD+DA是否发生改变,若会,说明理由;若不会,求出OD+DA;
(2)你认为OA的长度是否会发生变化?若变化,那么OA最长是多少?OA最长时四边形OBAC是怎样的四边形?并说明理由;
(3)填空:当OA最长时A的坐标( , ),直线OA的解析式 .

如图,在梯形ABCD中,AD∥BC,M,N分别是AD,BC的中点,E,F分别是BM,CM的中点.

(1)证明四边形MENF是平行四边形;
(2)若使四边形MENF是菱形,还需在梯形ABCD中添加什么条件?请你写出这个条件.

(1)证明四边形MENF是平行四边形;
(2)若使四边形MENF是菱形,还需在梯形ABCD中添加什么条件?请你写出这个条件.
如图,已知正方形ABCD的边长为5,且∠EAF=45°,把△ABE绕点A逆时针旋转90°,落在△ADG的位置.
(1)请在图中画出△ADG.
(2)证明:∠GAF=45°.
(3)求点A到EF的距离AH.
(1)请在图中画出△ADG.
(2)证明:∠GAF=45°.
(3)求点A到EF的距离AH.

如图,在等腰直角三角形ABC中,∠C=90°,AC=8,点F是AB边上的中点,点D,E分别在AC,BC边上运动,且保持AD=CD.连结DE,DF,EF.在此运动变化的过程中,下列结论:

①△DFE是等腰直角三角形;
②四边形CDFE不可能为正方形;
③DE长度的最小值为4;
④四边形CDFE的面积保持不变;
⑤△CDE面积的最大值为8.
其中正确的结论是_____________.

①△DFE是等腰直角三角形;
②四边形CDFE不可能为正方形;
③DE长度的最小值为4;
④四边形CDFE的面积保持不变;
⑤△CDE面积的最大值为8.
其中正确的结论是_____________.
(满分l0分)如图,A,B两点分别位于一个池塘的两端,由于受条件限制无法直接度量A,B间的距离.小明利用学过的知识,设计了如下三种测量方法,如图①,②,③所示(图中a,b,c…表示长度,α,β,θ…表示角度).

(1)请你写出小明设计的三种测量方法中AB的长度:图①AB=_______,图②AB=_______,图③AB=_______;
(2)请你再设计一种不同于以上三种的测量方法,画出示意图(不要求写画法),用字母标注需测量的边或角,并写出AB的长度.

(1)请你写出小明设计的三种测量方法中AB的长度:图①AB=_______,图②AB=_______,图③AB=_______;
(2)请你再设计一种不同于以上三种的测量方法,画出示意图(不要求写画法),用字母标注需测量的边或角,并写出AB的长度.
如图,在△ABC中,AB>AC,D,E分别是AB,AC上的点,将△ADE沿线段DE翻折,使点A落在边BC上,记为A′.若四边形AD A′E是菱形,则下列说法中正确的是


A.DE是△ABC的中位线 |
B.AA′是BC边上的中线 |
C.AA′是BC边上的高 |
D.AA′是△ABC的角平分线 |
若矩形的一个短边与长边的比值为
,(黄金分割数),我们把这样的矩形叫做黄金矩形
(1)操作:请你在如图所示的黄金矩形ABCD(AB>AD)中,以短边AD为一边作正方形AEFD.
(2)探究:在(1)中的四边形EBCF是不是黄金矩形?若是,请予以证明;若不是,请说明理由.
(3)归纳:通过上述操作及探究,请概括出具体有一般性的结论(不需证明).

(1)操作:请你在如图所示的黄金矩形ABCD(AB>AD)中,以短边AD为一边作正方形AEFD.
(2)探究:在(1)中的四边形EBCF是不是黄金矩形?若是,请予以证明;若不是,请说明理由.
(3)归纳:通过上述操作及探究,请概括出具体有一般性的结论(不需证明).
