- 数与式
- 方程与不等式
- 函数
- 图形的性质
- + 用勾股定理解三角形
- 已知两点坐标,用勾股定理求两点距离
- 勾股树(数)问题
- 以直角三角形三边为边长的图形面积
- 勾股定理与网格问题
- 勾股定理与折叠问题
- 利用勾股定理求两条线段的平方和(差)
- 利用勾股定理证明线段平方关系
- 勾股定理的证明方法
- 以弦图为背景的计算题
- 用勾股定理构造图形解决问题
- 勾股定理与无理数
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
课本中有这样一句话:“利用勾股定理可以作出
,
;,…线段(如图所示).”即: OA=1,过A作AA1⊥OA且AA1=1,根据勾股定理,得OA1=
:再过A1作A1A2⊥OAl且A1A2=1,得OA2=
;…以此类推,得OA2018=____.





如图,在Rt△ABC中,∠C=90°,AC=6,BC=8.
(1)分别以直线AC,BC为轴,把△ABC旋转一周,得到两个不同的圆锥,求这两个圆锥的侧面积;
(2)以直线AB为轴,把△ABC旋转一周,求所得几何体的表面积.
(1)分别以直线AC,BC为轴,把△ABC旋转一周,得到两个不同的圆锥,求这两个圆锥的侧面积;
(2)以直线AB为轴,把△ABC旋转一周,求所得几何体的表面积.

如图,在矩形ABCO中,AO=3, OC=4,设D、E分别是线段AC、OC上的动点,它们同时出发,点D以每秒3个单位的速度从点A向点C运动,点E以每秒1个单位的速度从点C向点O运动(不包含A、C两个端点).当t=___________时,△ODE为直角三角形.

图甲是任意一个直角三角形ABC,它的两条直角边的长分别为a,b,斜边长为c.如图乙、丙那样分别取四个与直角三角形ABC全等的三角形,放在边长为a+b的正方形内.

(1)图乙、图丙中①②③都是正方形.由图可知:①是以________为边长的正方形,②是以________为边长的正方形,③是以________为边长的正方形;
(2)图乙中①的面积为________,②的面积为________,图丙中③的面积为________;
(3)图乙中①②面积之和为__________;
(4)图乙中①②的面积之和与图丙中正方形③的面积有什么关系?为什么?由此你能得到关于直角三角形三边长的关系吗?

(1)图乙、图丙中①②③都是正方形.由图可知:①是以________为边长的正方形,②是以________为边长的正方形,③是以________为边长的正方形;
(2)图乙中①的面积为________,②的面积为________,图丙中③的面积为________;
(3)图乙中①②面积之和为__________;
(4)图乙中①②的面积之和与图丙中正方形③的面积有什么关系?为什么?由此你能得到关于直角三角形三边长的关系吗?
如图,在四边形ABCD 中,∠ABC=90°,AB=6,BC=8,CD=10,AD=10
,
(1)求四边形ABCD的面积(2)求 BD的长

(1)求四边形ABCD的面积(2)求 BD的长

已知某经济开发区有一块四边形空地ABCD,如图所示,现计划在该空地上种植草皮,经测量∠B=90°,AB=400m,AD=1300m,CD=1200m,BC=300m,请计算种植草皮的面积.

如图,钓鱼竿AC长6m,露在水面上的鱼线BC长3
m,某钓者想看看鱼钓上的情况,把鱼竿AC转动到AC′的位置,此时露在水面上的鱼线B′C′为3
m,则鱼竿转过的角度是__________.


