- 数与式
- 方程与不等式
- 函数
- 图形的性质
- + 勾股定理
- 用勾股定理解三角形
- 已知两点坐标,用勾股定理求两点距离
- 勾股树(数)问题
- 以直角三角形三边为边长的图形面积
- 勾股定理与网格问题
- 勾股定理与折叠问题
- 利用勾股定理求两条线段的平方和(差)
- 利用勾股定理证明线段平方关系
- 勾股定理的证明方法
- 以弦图为背景的计算题
- 用勾股定理构造图形解决问题
- 勾股定理与无理数
- 勾股定理的应用
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
某校九年级学生准备毕业庆典,打算用橄榄枝彩带来装饰大厅圆柱.已知大厅圆柱高4米,底面周长1米.他们打算精确地用彩带从上往下均匀缠绕圆柱3圈(如图),那么螺旋形彩带的长至少 米.

如图,在由边长都为1个单位长度的小正方形组成的
正方形网格中,点A,B,P 都在格点上.请画出以AB为边的格点四边形(四个顶点都在格点的四边形),要求同时满足以下条件:
ABCD, 使点P在所画四边形的内部;
(2)在图②中画出符合条件的一个四边形ABCD,使点P在所画四边形的边上;
(3)在图③中画出符合条件的一个四边形ABCD,使∠D=90°,且∠A≠90°.

条件1:点P到四边形的两个顶点的距离相等;
条件2:点P在四边形的内部或其边上;
条件3:四边形至少一组对边平行.
(1)在图①中画出符合条件的一个
(2)在图②中画出符合条件的一个四边形ABCD,使点P在所画四边形的边上;
(3)在图③中画出符合条件的一个四边形ABCD,使∠D=90°,且∠A≠90°.

如图,方格纸中小正方形的边长为1,△ABC的三个顶点都在小正方形的格点上,求

(1)△ABC的面积;
(2)△ABC的周长;
(3)点C到AB边的距离.

(1)△ABC的面积;
(2)△ABC的周长;
(3)点C到AB边的距离.
.如图,在等腰梯形ABCD中,AD∥BC,对角线AC⊥BD于点O,AE⊥BC,DF⊥BC,垂足分别为E、F,AD=4,BC=8,则AE+EF= 

如图,将矩形纸片ABCD沿EF折叠,使A点与C点重合,点D落在点G处,EF为折痕.

(1)求证:△FGC≌△EBC;
(2)若AB=8,AD=4,求四边形ECGF(阴影部分)的面积.

(1)求证:△FGC≌△EBC;
(2)若AB=8,AD=4,求四边形ECGF(阴影部分)的面积.