- 数与式
- 方程与不等式
- 函数
- 图形的性质
- + 勾股定理
- 用勾股定理解三角形
- 已知两点坐标,用勾股定理求两点距离
- 勾股树(数)问题
- 以直角三角形三边为边长的图形面积
- 勾股定理与网格问题
- 勾股定理与折叠问题
- 利用勾股定理求两条线段的平方和(差)
- 利用勾股定理证明线段平方关系
- 勾股定理的证明方法
- 以弦图为背景的计算题
- 用勾股定理构造图形解决问题
- 勾股定理与无理数
- 勾股定理的应用
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
在
中,E,F分别是AB,DC上的点,且
,连接DE,BF,A


A.![]() (1)求证:四边形DEBF是平行四边形; (2)若AF平分 ![]() |
如图所示,在长方形纸片ABCD中,AB=32cm,把长方形纸片沿AC折叠,点B落在点E处,AE交DC于点F,AF=25cm,则AD的长为( )


A.16cm | B.20cm | C.24cm | D.28cm |
如图,⊙O内切于正方形ABCD,边AD、CD分别与⊙O切于点E、F,点M、N分别在线段DE、DF上,且MN与⊙O相切,若△MBN的面积为8,则⊙O的半径为( )


A.![]() | B.2![]() | C.![]() | D.2![]() |
如图,在正方形ABCD中,点P为AD延长线上一点,连接AC、CP,F为AB边上一点,满足CF⊥CP,过点B作BM⊥CF,分别交AC、CF于点M、N
(1)若AC=
AP,AC=4
,求△ACP的面积;
(2)若BC=MC,证明:CP﹣BM=2FN.
(1)若AC=


(2)若BC=MC,证明:CP﹣BM=2FN.
