- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 格点图中画等腰三角形
- 找出图中的等腰三角形
- 根据等角对等边证明等腰三角形
- + 根据等角对等边证明边相等
- 根据等角对等边求边长
- 直线上与已知两点组成等腰三角形的点
- 求与图形中任意两点构成等腰三角形的点
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
已知,如图,在平面直角坐标系中,A(-3a,0),B(0,4a),△ABO的面积是6.

(1)求B的坐标.
(2)在x轴的正半轴上有一点C,使∠BAO=2∠BCA,AB=5,动点P从A出发,沿线段AC运动,速度为每秒1个单位长度,设点P的运动时间为t,△BCP的面积为S,用含t的式子来表示S .
(3)在(2)的条件下,在P出发的同时,Q从B出发。沿着平行于x轴的直线,以每秒2个单位长度的速度匀速向右运动,在y轴上是否存在一点R,使△PQR为以PQ为腰的等腰直角三角形,求出满足条件的t,并直接写出点R的坐标.

(1)求B的坐标.
(2)在x轴的正半轴上有一点C,使∠BAO=2∠BCA,AB=5,动点P从A出发,沿线段AC运动,速度为每秒1个单位长度,设点P的运动时间为t,△BCP的面积为S,用含t的式子来表示S .
(3)在(2)的条件下,在P出发的同时,Q从B出发。沿着平行于x轴的直线,以每秒2个单位长度的速度匀速向右运动,在y轴上是否存在一点R,使△PQR为以PQ为腰的等腰直角三角形,求出满足条件的t,并直接写出点R的坐标.
如图1,在三角形
中,把
绕点
顺时针旋转
得到
,把
绕点
逆时针旋转
,得到
,连接
,过点
作
的垂线,交
于点
,交
于点
.
(特例尝试)如图2,当
时,
①求证:
;
②猜想
与
的数量关系并说明理由.
(理想论证)在图1中,当
为任意三角形时,②中
与
的数量关系还成立吗?请给予证明.
(拓展应用)如图3,直线
与
轴,
轴分别交于
、
两点,分别以
,
为直角边在第二、一象限内作等腰
和等腰
,连接
,交
轴于点
.试猜想
的长是否为定值,若是,请求出这个值;若不是,请说明理由.
















(特例尝试)如图2,当

①求证:

②猜想


(理想论证)在图1中,当



(拓展应用)如图3,直线














如图,在等腰Rt△ABC中,AB=AC,D为斜边BC的中点,E、F分别为AB、AC边上的点,且DE⊥DF,若BE=8cm,CF=6cm.

(1)判断△DEF的形状,并说明理由
(2)求△DEF的面积?

(1)判断△DEF的形状,并说明理由
(2)求△DEF的面积?
已知,如图,在△ABC中,OB和OC分别平分∠ABC和∠ACB,过O作DE∥BC,分别交AB、AC于点D、E,若DE=8,则线段BD+CE的长为


A.5 | B.6 | C.7 | D.8 |