- 数与式
- 方程与不等式
- 函数
- 图形的性质
- + 根据等边对等角求角度
- 根据等边对等角证明
- 根据三线合一求解
- 根据三线合一证明
- 等腰三角形的定义
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在△ABC中,AB= AC,∠B= 66°,D、E分别为AB,BC上一点,AF//DE,若∠BDE = 30°,则∠FAC的度数为____________

(阅读)例题:在等腰三角形
中,若
,求
的度数.
点点同学在思考时是这样分析的:
,
都可能是顶角或底角,因此需要进行分类.他认为画“树状图”可以帮我们不重复,不遗漏地分类(如图),据此可求出
的度数.

(解答)
由以上思路,可得
的度数为__________;
(应用)
将一个边长为5,12,13的直角三角形拼上一个三角形后可以拼成一个等腰三角形,图2就是其中的一种拼法.请你利用备用图画出三种可能的情形,使得拼成的等腰三角形腰长为13.
(注意:请对所拼成图形中的线段长度标注数据)



点点同学在思考时是这样分析的:




(解答)
由以上思路,可得

(应用)
将一个边长为5,12,13的直角三角形拼上一个三角形后可以拼成一个等腰三角形,图2就是其中的一种拼法.请你利用备用图画出三种可能的情形,使得拼成的等腰三角形腰长为13.
(注意:请对所拼成图形中的线段长度标注数据)
