如图:D,E分别是△ABC的边BC、AC上的点,若AB=AC,AD=AE,则()


A.当∠B为定值时,∠CDE为定值 |
B.当∠α为定值时,∠CDE为定值 |
C.当∠β为定值时,∠CDE为定值 |
D.当∠γ为定值时,∠CDE为定值 |
如图1,△ABC中,∠ACB=90°,AC=BC=6,M点在边AC上,且CM=2,过M点作AC的垂线交AB边于E点,动点P从点A出发沿AC边向M点运动,速度为1个单位/秒,当动点P到达M点时,运动停止.连接EP、EC,设运动时间为t.在此过程中:
(1)当t=1时,求EP的长度;
(2)当t为何值时,△EPC是等腰三角形?
(3)如图2,若点N是线段ME上一点,且MN=3,点Q是线段AE上一动点,连接PQ、PN、NQ得到△PQN,请直接写出△PQN周长的最小值.

(1)当t=1时,求EP的长度;
(2)当t为何值时,△EPC是等腰三角形?
(3)如图2,若点N是线段ME上一点,且MN=3,点Q是线段AE上一动点,连接PQ、PN、NQ得到△PQN,请直接写出△PQN周长的最小值.


在等边△ABC中,点D在BC边上,点E在AC的延长线上,DE=DA(如图1).
(1)求证:∠BAD=∠EDC;
(2)点E关于直线BC的对称点为M,连接DM,AM.
①依题意将图2补全;
②小姚通过观察、实验提出猜想:在点D运动的过程中,始终有DA=AM,小姚把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:
想法1:要证明DA=AM,只需证△ADM是等边三角形;
想法2:连接CM,只需证明△ABD≌△ACM即可.
请你参考上面的想法,帮助小姚证明DA=AM(一种方法即可).
(1)求证:∠BAD=∠EDC;
(2)点E关于直线BC的对称点为M,连接DM,AM.
①依题意将图2补全;
②小姚通过观察、实验提出猜想:在点D运动的过程中,始终有DA=AM,小姚把这个猜想与同学们进行交流,通过讨论,形成了证明该猜想的几种想法:
想法1:要证明DA=AM,只需证△ADM是等边三角形;
想法2:连接CM,只需证明△ABD≌△ACM即可.
请你参考上面的想法,帮助小姚证明DA=AM(一种方法即可).
