- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 连接两点作辅助线
- 全等三角形——倍长中线模型
- + 全等三角形——旋转模型
- 全等三角形——垂线模型
- 全等三角形——其他模型
- 证一条线段等于两条线段和(差)
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,在正方形
中,点
、
为边
和
上的动点(不含端点),
.下列三个结论:①当
时,则
;②
;③
的周长不变,其中正确结论的个数是( )












A.0 | B.1 |
C.2 | D.3 |
探究问题:
⑴方法感悟:
如图①,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF=45°,连接EF,求证DE+BF=EF.
感悟解题方法,并完成下列填空:
将△ADE绕点A顺时针旋转90°得到△ABG,此时AB与AD重合,由旋转可得:
AB=AD,BG=DE, ∠1=∠2,∠ABG=∠D=90°,
∴∠ABG+∠ABF=90°+90°=180°,
因此,点G,B,F在同一条直线上.
∵∠EAF=45°
∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
∵∠1=∠2,
∴∠1+∠3=45°.
即∠GAF=∠_________.
又AG=AE,AF=AF
∴△GAF≌_______.
∴_________=EF,故DE+BF=EF.

⑵方法迁移:
如图②,将
沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=
∠DA

⑶问题拓展:
如图③,在四边形ABCD中,AB=AD,E,F分别为DC,BC上的点,满足
,试猜想当∠B与∠D满足什么关系时,可使得DE+BF=EF.请直接写出你的猜想(不必说明理由)
.
⑴方法感悟:
如图①,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF=45°,连接EF,求证DE+BF=EF.
感悟解题方法,并完成下列填空:
将△ADE绕点A顺时针旋转90°得到△ABG,此时AB与AD重合,由旋转可得:
AB=AD,BG=DE, ∠1=∠2,∠ABG=∠D=90°,
∴∠ABG+∠ABF=90°+90°=180°,
因此,点G,B,F在同一条直线上.
∵∠EAF=45°
∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
∵∠1=∠2,
∴∠1+∠3=45°.
即∠GAF=∠_________.
又AG=AE,AF=AF
∴△GAF≌_______.
∴_________=EF,故DE+BF=EF.

⑵方法迁移:
如图②,将


A.试猜想DE,BF,EF之间有何数量关系,并证明你的猜想. |

⑶问题拓展:
如图③,在四边形ABCD中,AB=AD,E,F分别为DC,BC上的点,满足

.

如图,正方形
的边长为
,对角线
相交于点
,将直角三角板的直角顶点放在点
处,两直角边分别与
重叠,当三角板绕点
顺时针旋转
角
时,两直角边与正方形的边
交于
两点,则四边形
的周长( )














A.先变小再变大 | B.先变大再变小 |
C.始终不变 | D.无法确定 |
正方形
中,E是
边上一点,
(1)将
绕点A按顺时针方向旋转,使
重合,得到
,如图1所示.观察可知:与
相等的线段是_______,
______.
(2)如图2,正方形
中,
分别是
边上的点,且
,试通过旋转的方式说明:
(3)在(2)题中,连接
分别交
于
,你还能用旋转的思想说明
.


(1)将





(2)如图2,正方形





(3)在(2)题中,连接





问题提出
(1)如图①,已知
中,
,将
绕点O逆时针旋转90°得到
,连接
.则
______;

问题探究
(2)如图②,已知
是边长为
的等边三角形,以
为边向外作等边
,P为
内一点,将线段
绕点C逆时针旋转60°,点P的对应点为点Q,连接
,求
的最小值;

问题解决
(3)如图③,矩形场地
为一个货运场,其中
米,
米,顶点A、D为两个出口,现想在货运广场内建一个货物堆放平台P,在
边上(含B,C两点)开一个货物入口M,并修建三条专用车道
、
、
.若修建专用车道的费用为10000元/米(车道宽度不计),当M、P建在何处时,修建专用车道的费用最少?最少费用为多少?(结果保留根号)
(1)如图①,已知







问题探究
(2)如图②,已知









问题解决
(3)如图③,矩形场地








如图,点E是正方形ABCD内的一点,连接AE、BE、CE,将△ABE绕点B顺时针旋转90°到△CBE′的位置.若AE=1,BE=2,CE=3,则∠BE′C= 度.

已知△ABC为等腰直角三角形,∠ACB=9
0°,点A在直线DE上,过C点作CF⊥DE于F,过B点作BG⊥DE于G.

(1)发现问题:如图1,当B、C两点均在直线DE上方时,线段AG、BG和CF存在的数量关系是 .
(2)类比探究:当△ABC绕点A顺时针旋转至图2的位置时,线段AG、BG和CF之间的数量关系是否会发生变化?如果不变,请说明理由;如果变化,请写出你的猜想,并给予证明;
(3)拓展延伸:当△ABC绕点A顺时针旋转至图3的位置时,若CF=1,AG=2,请直接写出△ABC的面积.


(1)发现问题:如图1,当B、C两点均在直线DE上方时,线段AG、BG和CF存在的数量关系是 .
(2)类比探究:当△ABC绕点A顺时针旋转至图2的位置时,线段AG、BG和CF之间的数量关系是否会发生变化?如果不变,请说明理由;如果变化,请写出你的猜想,并给予证明;
(3)拓展延伸:当△ABC绕点A顺时针旋转至图3的位置时,若CF=1,AG=2,请直接写出△ABC的面积.