- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 连接两点作辅助线
- + 全等三角形——倍长中线模型
- 全等三角形——旋转模型
- 全等三角形——垂线模型
- 全等三角形——其他模型
- 证一条线段等于两条线段和(差)
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
(1)如图①,在四边形
中,
,点
是
的中点,若
是
的平分线,试判断
,
,
之间的等量关系.
解决此问题可以用如下方法:延长
交
的延长线于点
,易证
得到
,从而把
,
,
转化在一个三角形中即可判断.
,
,
之间的等量关系________;
(2)问题探究:如图②,在四边形
中,
,
与
的延长线交于点
,点
是
的中点,若
是
的平分线,试探究
,
,
之间的等量关系,并证明你的结论.









解决此问题可以用如下方法:延长











(2)问题探究:如图②,在四边形













已知直角△ABC,∠BAC=90°,D是斜边BC的中点,E、F分别是AB、AC边上的点,且DE⊥DF连接EF

(1)如图1,求证:∠BED=∠AFD;
(2)求证:BE2+CF2=EF2;
(3)如图2,当∠ABC=45°,若BE=12,CF=5,求△DEF的面积.

(1)如图1,求证:∠BED=∠AFD;
(2)求证:BE2+CF2=EF2;
(3)如图2,当∠ABC=45°,若BE=12,CF=5,求△DEF的面积.
△ABC是等边三角形,点C关于AB对称的点为C′,点P是直线C′B上的一个动点,连接AP,作∠APD=60°交射线BC于点D.
(1)若点P在线段C′B上(不与点C′,点B重合)
①如图1,当点P是线段C′B的中点时,直接写出线段PD与线段PA的数量关系 .
②如图2,点P是线段C′B上任意一点,证明PD与PA的数量关系.
(2)若点P在线段C′B的延长线上,
①依题意补全图3;
②直接写出线段BD,AB,BP之间的数量关系为: .
(1)若点P在线段C′B上(不与点C′,点B重合)
①如图1,当点P是线段C′B的中点时,直接写出线段PD与线段PA的数量关系 .
②如图2,点P是线段C′B上任意一点,证明PD与PA的数量关系.
(2)若点P在线段C′B的延长线上,
①依题意补全图3;
②直接写出线段BD,AB,BP之间的数量关系为: .

(问题情境)
课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=12,AC=8,求BC边上的中线AD的取值范围.
小明在组内经过合作交流,得到了如下的解决方法:延长AD到E,使DE=AD,连接BE.请根据小明的方法思考:

(1)由已知和作图能得到△ADC≌△EDB,依据是 .
A.SSS B.SAS C.AAS D.HL
(2)由“三角形的三边关系”可求得AD的取值范围是 .
解后反思:题目中出现“中点”“中线”等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.
(初步运用)
如图2,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.若EF=3,EC=2,求线段BF的长.
(灵活运用)
如图3,在△ABC中,∠A=90°,D为BC中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF,试猜想线段BE、CF、EF三者之间的等量关系,并证明你的结论.
课外兴趣小组活动时,老师提出了如下问题:如图1,△ABC中,若AB=12,AC=8,求BC边上的中线AD的取值范围.
小明在组内经过合作交流,得到了如下的解决方法:延长AD到E,使DE=AD,连接BE.请根据小明的方法思考:

(1)由已知和作图能得到△ADC≌△EDB,依据是 .
A.SSS B.SAS C.AAS D.HL
(2)由“三角形的三边关系”可求得AD的取值范围是 .
解后反思:题目中出现“中点”“中线”等条件,可考虑延长中线构造全等三角形,把分散的已知条件和所求证的结论集合到同一个三角形中.
(初步运用)
如图2,AD是△ABC的中线,BE交AC于E,交AD于F,且AE=EF.若EF=3,EC=2,求线段BF的长.
(灵活运用)
如图3,在△ABC中,∠A=90°,D为BC中点,DE⊥DF,DE交AB于点E,DF交AC于点F,连接EF,试猜想线段BE、CF、EF三者之间的等量关系,并证明你的结论.
阅读下面文字并填空:数学课上张老师出了这样一道题:“如图,在
中,
,
是中线,点
为
的中点,连接
.求证:
”

张老师给出了如下简要分析:“要证
,就是要证线段的倍分问题,所以有两个思路,思路一:找
,故取
的中点
,连接
,只要证
即可.这就将证明线段倍分问题______为证明线段相等问题,只要证出______,则结论成立.思路二:变
为
,因为需要找到
,于是延长
至点
,使
,只要证______即可.连接
,若证出______
______则结论成立.”你认为在现阶段可以用思路______来完成这个证明.








张老师给出了如下简要分析:“要证













