- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 全等三角形的概念及性质
- + 三角形全等的判定
- SSS
- SAS
- 尺规作图——作角
- 尺规作图——作三角形
- HL
- 全等的判定综合
- 全等三角形的辅助线问题
- 角平分线的性质与判定
- 线段垂直平分线
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,AC与BD相交于E,且AC=B

A. (1)请添加一个条件能说明BC=AD,这个条件可以是: ; (2)请你选择(1)中你所添加的一个条件,说明BC=AD的理由. |

边长相等的两个正方形ABCO、ADEF如图摆放,正方形ABCO的边OA、OC在坐标轴上,ED交线段OC于点G,ED的延长线交线段BC于点P,连AG,已知OA长为
.
(1)求证:
;
(2)若
,AG=2,求点G的坐标;
(3)在(2)条件下,在直线PE上找点M,使以M、A、G为顶点的三角形是等腰三角形,求出点M的坐标.

(1)求证:

(2)若

(3)在(2)条件下,在直线PE上找点M,使以M、A、G为顶点的三角形是等腰三角形,求出点M的坐标.

如图①,在△ABC中,
为锐角,点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADE


A. (1)如图②,如果AB=AC, ![]() (2)如图③,如果AB ![]() ![]() ![]() ![]() |

如图,在△ABC中,∠C=90°,AD平分∠BAC,DE⊥AB于E,下列结论:①CD=ED;②AC+BE=AB;③∠BDE=∠BAC;④BE=DE;⑤SBDE:S△ACD=BD:AC,其中正确的个数()


A.5个 | B.4个 | C.3个 | D.2个 |
(1)(问题情境)小明遇到这样一个问题:
如图①,已知
是等边三角形,点
为
边上中点,
,
交等边三角形外角平分线
所在的直线于点
,试探究
与
的数量关系.
小明发现:过
作
,交
于
,构造全等三角形,经推理论证问题得到解决.请直接写出
与
的数量关系,并说明理由.
(2)(类比探究)
如图②,当
是线段
上(除
外)任意一点时(其他条件不变)试猜想
与
的数量关系并证明你的结论.
(3)(拓展应用)
当
是线段
上延长线上,且满足
(其他条件不变)时,请判断
的形状,并说明理由.
如图①,已知









小明发现:过






(2)(类比探究)
如图②,当





(3)(拓展应用)
当




