- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 全等三角形的概念及性质
- + 三角形全等的判定
- SSS
- SAS
- 尺规作图——作角
- 尺规作图——作三角形
- HL
- 全等的判定综合
- 全等三角形的辅助线问题
- 角平分线的性质与判定
- 线段垂直平分线
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图所示,在△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD交BD的延长线于点E,CE=1,延长CE、BA交于点F.

(1)求证:△ADB≌△AFC;
(2)求BD的长度.

(1)求证:△ADB≌△AFC;
(2)求BD的长度.
如图,点B的坐标为(4,4),作BA⊥x轴,BC⊥y轴,垂足分别为A,C,点D为线段OA的中点,点P从点A出发,在线段AB、BC上沿A→B→C运动,当OP=CD时,点P的坐标为_________________________ .

在等腰三角形ABC中,∠ABC=90°,D为AC边上中点,过D点作DE⊥DF,交AB于E,交BC于F,若AE=4,FC=3,则EF的长是_____.

(1)问题发现,

如图1,在
中,
,
是
上一点,将点
绕点
顺时针旋转50°得到点
,则
与
的数量关系是________________________。
(2)类比探究
如图2,将(1)中的
绕点
在平面内旋转,(1)中的结论是否成立,并就图2的情形说明理由。
(3)拓展延伸
绕点
在平面旋转,当旋转到
时,请直接写出
度数。

如图1,在









(2)类比探究
如图2,将(1)中的


(3)拓展延伸




如图,分别将“
”记为
,“
”记为
,“
”记为
。

(1)填空:“如图,如果
,
,那么
”是_______________命题;(填“真”或“假”)
(2)以
中的两个为条件,第三个为结论,写出一个真命题,并加以证明。







(1)填空:“如图,如果



(2)以

在Rt△ABC中,∠C=90°,Rt△ABC绕点A顺时针旋转到Rt△ADE的位置,点E在斜边AB上,连结BD,过点D作DF⊥AC于点F.

(1)如图1,若点F与点A重合,求证:AC=BC.
(2)如图2,若点F在线段CA的延长线上,∠DAF=∠DBA,请判断线段AF与BE的数量关系,并说明理由.

(1)如图1,若点F与点A重合,求证:AC=BC.
(2)如图2,若点F在线段CA的延长线上,∠DAF=∠DBA,请判断线段AF与BE的数量关系,并说明理由.
已知命题“等腰三角形两腰上的高线长相等”
(1)请写出该命题的逆命题;
(2)判断(1)中命题的真假,并画出图形,补充已知,求证,及证明过程.
图形:
已知:在△ABC中,CD⊥AB,BE⊥AC,且______.
求证:______.
证明:
(1)请写出该命题的逆命题;
(2)判断(1)中命题的真假,并画出图形,补充已知,求证,及证明过程.
图形:
已知:在△ABC中,CD⊥AB,BE⊥AC,且______.
求证:______.
证明: