- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 全等三角形的概念及性质
- + 三角形全等的判定
- SSS
- SAS
- 尺规作图——作角
- 尺规作图——作三角形
- HL
- 全等的判定综合
- 全等三角形的辅助线问题
- 角平分线的性质与判定
- 线段垂直平分线
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图,∠B=∠DEF,BC=EF, 要证明△ABC≌△DEF,
(1)若以“SAS”为依据,还缺条件_________;
(2)若以“ASA”为依据,还缺条件_________.

(1)若以“SAS”为依据,还缺条件_________;
(2)若以“ASA”为依据,还缺条件_________.
数学课上,李老师出示了如下框中的题目.

小敏与同桌小聪讨论后,进行了如下解答:
(1)特殊情况,探索结论:当点E为AB的中点时,如图1,确定线段AE与的DB大小关系.请你直接写出结论:AE DB(填“>”,“<”或“=”).

(2)特例启发,解决问题:解:题目中,AE与DB的大小关系是:AE DB(填“>”,“<”或“=”).理由如下:如图2,过点E作EF∥BC,交AC于点F,(请你完成以下解答过程)
(3)拓展结论,设计新题:在等边三角形ABC中,点E在AB的延长线上,点D在直线BC上,且ED=E

小敏与同桌小聪讨论后,进行了如下解答:
(1)特殊情况,探索结论:当点E为AB的中点时,如图1,确定线段AE与的DB大小关系.请你直接写出结论:AE DB(填“>”,“<”或“=”).

(2)特例启发,解决问题:解:题目中,AE与DB的大小关系是:AE DB(填“>”,“<”或“=”).理由如下:如图2,过点E作EF∥BC,交AC于点F,(请你完成以下解答过程)
(3)拓展结论,设计新题:在等边三角形ABC中,点E在AB的延长线上,点D在直线BC上,且ED=E
A.若△ABC的边长为2,AE=3,求CD的长.(请画出符合题意的图形,并直接写出结果) |
如图所示,△ADF和△BCE中,∠A=∠B,点D,E,F,C在同一直线上,有如下三个关系式:①AD=BC;②DE=CF;③BE∥A

A.请用其中两个关系式作为条件,另一个作为结论,写出的一个正确结论,并说明它正确的理由. |

在下列命题中,是假命题的个数有( )
①如果
,那么
. ② 两条直线被第三条直线所截,同位角相等
③面积相等的两个三角形全等 ④ 三角形的一个外角等于不相邻的两个内角的和.
①如果


③面积相等的两个三角形全等 ④ 三角形的一个外角等于不相邻的两个内角的和.
A.3个 | B.2个 | C.1个 | D.0个 |
如图,△ABC中,∠B=∠C,点D,E,F分别在边BC,AB,A

A.上,且BD= CE,∠DEF=∠B,图中是否存在和△BDE全等的三角形?说明你的理由。 |

(1)如图1:在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°.E,F分别是BC,CD上的点.且∠EAF=60°.探究图中线段EF,BE,FD之间的数量关系.
小明同学探究的方法是:延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,
他的结论是 (直接写结论,不需证明);
(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是BC,CD上的点,且∠EAF是∠BAD的二分之一,上述结论是否仍然成立,并说明理由.
(3)如图3,四边形ABCD是边长为5的正方形,∠EBF=45°,直接写出三角形DEF的周长.
小明同学探究的方法是:延长FD到点G.使DG=BE.连结AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,
他的结论是 (直接写结论,不需证明);
(2)如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E、F分别是BC,CD上的点,且∠EAF是∠BAD的二分之一,上述结论是否仍然成立,并说明理由.
(3)如图3,四边形ABCD是边长为5的正方形,∠EBF=45°,直接写出三角形DEF的周长.

如图,△ABC中,P、Q分别是BC、AC上的点,作PR⊥AB,PS⊥AC,垂足分别是R、S,若AQ=PQ,PR=PS,下面四个结论:①AS=AR;②QP∥AR;③△BRP≌△QSP;④AP垂直平分RS.其中正确结论的序号是().


A.①② | B.①②③ | C.①②④ | D.①②③④ |