- 数与式
- 方程与不等式
- 函数
- 图形的性质
- 平行线的性质
- + 平行线性质的应用
- 根据平行线的性质探究角的关系
- 根据平行线的性质求角的度数
- 平行线的性质在生活中的应用
- 平行线的判定与性质
- 平行线之间的距离
- 图形的变化
- 统计与概率
- 观察、猜想与证明
- 实践与应用(暂存)
如图 1,在△ ABC中,∠ACB = 2∠B, ∠BAC的平分线AO交BC于点D,点H为AO上一动点,过点H作直线l⊥ AO于H,分别交直线AB、AC、BC于点N、E、M
(1)当直线l经过点C时(如图 2),求证:NH = CH;
(2)当M是BC中点时,写出CE和CD之间的等量关系,并加以证明;
(3)请直接写出BN、CE、CD之间的等量关系.


(1)当直线l经过点C时(如图 2),求证:NH = CH;
(2)当M是BC中点时,写出CE和CD之间的等量关系,并加以证明;
(3)请直接写出BN、CE、CD之间的等量关系.



如图1,直线AB∥CD,直线EF交AB于点E,交CD于点F,点G和点H分别是直线AB和CD上的动点,作直线GH,EI平分∠AEF,HI平分∠CHG,EI与HI交于点I.
(1)如图,点G在点E的左侧,点H在点F的右侧,若∠AEF=70°,∠CHG=60°,求∠ETH的度数.

(2)如图,点G在点E的右侧,点H也在点F的右侧,若∠AEF=
,∠CHG=β,其他条件不变,求∠ETH的度数.

(3)如图,点G在点E的右侧,点H也在点F的右侧,∠GHC的平分线HJ交∠KEG的平分线EJ于点J.其他条件不变,若∠AEF=
,∠CHG=β,求∠EJH的度数.
(1)如图,点G在点E的左侧,点H在点F的右侧,若∠AEF=70°,∠CHG=60°,求∠ETH的度数.

(2)如图,点G在点E的右侧,点H也在点F的右侧,若∠AEF=


(3)如图,点G在点E的右侧,点H也在点F的右侧,∠GHC的平分线HJ交∠KEG的平分线EJ于点J.其他条件不变,若∠AEF=


如图,△ABC中,AB=AC,BD平分∠ABC交AC于G,DM∥BC交∠ABC的外角平分线于M,交AB、AC于F、E,下列结论:①MB⊥BD;②FD=FB;③MD=2CE.其中一定正确的是_____.(只填写序号)

如图,AB∥CD,EF交AB于E,交CD于F,EP平分∠AEF,FP平分∠CFE,直线MN经过点P并与AB,CD分别交于点M,N.

(1)如图①,求证:EM+FN=EF;
(2)如图②,(1)的结论是否成立?若成立,请证明;若不成立,直接写出EM,FN,EF三条线段的数量关系.

(1)如图①,求证:EM+FN=EF;
(2)如图②,(1)的结论是否成立?若成立,请证明;若不成立,直接写出EM,FN,EF三条线段的数量关系.